检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Automation, Heilongjiang University, Harbin Heilongjiang 150080, China [2]Computer and Information Engineering College, Heilongjiang Institute of Science and Technology, Harbin Heilongjiang 150027, China
出 处:《控制理论与应用(英文版)》2012年第1期64-70,共7页
基 金:supported by the National Natural Science Foundation of China (No. 60874063);the Automatic Control Key Laboratory of Heilongjiang University;the Science and Technology Research Foundation of Heilongjiang Education Department (No. 11553101)
摘 要:For the linear discrete time-invariant stochastic system with correlated noises, and with unknown model parameters and noise statistics, substituting the online consistent estimators of the model parameters and noise statistics into the optimal time-varying Riccati equation, a self-tuning Riccati equation is presented. By the dynamic variance error system analysis (DVESA) method, it is rigorously proved that the self-tuning Riccati equation converges to the optimal time-varying Riccati equation. Based on this, by the dynamic error system analysis (DESA) method, it is proved that the corresponding self-tuning Kalman filter converges to the optimal time-varying Kalman filter in a realization, so that it has asymptotic optimality. As an application to adaptive signal processing, a self-tuning Kalman signal filter with the self-tuning Riccati equation is presented. A simulation example shows the effectiveness.For the linear discrete time-invariant stochastic system with correlated noises, and with unknown model parameters and noise statistics, substituting the online consistent estimators of the model parameters and noise statistics into the optimal time-varying Riccati equation, a self-tuning Riccati equation is presented. By the dynamic variance error system analysis (DVESA) method, it is rigorously proved that the self-tuning Riccati equation converges to the optimal time-varying Riccati equation. Based on this, by the dynamic error system analysis (DESA) method, it is proved that the corresponding self-tuning Kalman filter converges to the optimal time-varying Kalman filter in a realization, so that it has asymptotic optimality. As an application to adaptive signal processing, a self-tuning Kalman signal filter with the self-tuning Riccati equation is presented. A simulation example shows the effectiveness.
关 键 词:Kalman filter Self-tuning filter Riccati equation Lyapunov equation CONVERGENCE
分 类 号:TN241[电子电信—物理电子学] O175.1[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.238.220