检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mengling WANG Ning LI Shaoyuan LI
机构地区:[1]Institute of Automation,Shanghai Jiao Tong University,Shanghai 200240,China
出 处:《控制理论与应用(英文版)》2012年第1期71-76,共6页
基 金:supported by the National Nature Science Foundation of China (Nos. 60825302, 61074061);the High Technology Research and Development Program of China (No. 2007AA041403);the Program of Shanghai Subject Chief Scientist;‘Shu Guang’ Project of Shanghai Municipal Education Commission;Shanghai Education Development Foundation
摘 要:In this paper, the online correction model predictive control (MPC) strategy is presented for partial dif- ferential equation (PDE) unknown spatially-distributed systems (SDSs). The low-dimensional MIMO models are obtained using principal component analysis (PCA) method from the high-dimensional spatio-temporal data. Though the linear low- dimensional model is easy for control design, it is a linear approximation for nonlinear SDSs. Thus, the MPC strategy is proposed based on the online correction low-dimensional models, where the state at a previous time is used to correct the output of low-dimensional models and the spatial output is correct by the average deviation of the historical data. The simulations demonstrated show the accuracy and efficiency of the proposed methodologies.In this paper, the online correction model predictive control (MPC) strategy is presented for partial dif- ferential equation (PDE) unknown spatially-distributed systems (SDSs). The low-dimensional MIMO models are obtained using principal component analysis (PCA) method from the high-dimensional spatio-temporal data. Though the linear low- dimensional model is easy for control design, it is a linear approximation for nonlinear SDSs. Thus, the MPC strategy is proposed based on the online correction low-dimensional models, where the state at a previous time is used to correct the output of low-dimensional models and the spatial output is correct by the average deviation of the historical data. The simulations demonstrated show the accuracy and efficiency of the proposed methodologies.
关 键 词:Spatially-distributed system Principal component analysis (PCA) Model predictive control Time/spacereconstruction Time/space projection
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222