检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北农林科技大学信息工程学院,陕西杨凌712000 [2]西北农林科技大学机械与电子工程学院,陕西杨凌712100
出 处:《煤炭技术》2012年第1期177-179,共3页Coal Technology
摘 要:以精确获取图像中对象感兴趣区域为目标,提出一种基于视觉注意机制和K均值聚类相结合的感兴趣区提取方法。图像经过视觉特征提取、高斯金字塔多尺度变换后,依据多特征图合并策略生成显著图。采用K均值聚类方法分割图像的候选区域,并结合显著图提取图像感兴趣区。实验结果表明,运用该方法提取的感兴趣区更接近人类的视觉注意过程,并具有一定的抗噪能力。In view of exactly acquiring objects of natural images,the way of extracting regions of interest based on vision attention mechanism and k-means clustering was presented.After multi-scale Gaussian pyramids transform,multi-feature maps were combined into a saliency map.The natural image was segmented image regions with the k-means clustering algorithm.Combining with the saliency map,regions of interest was extracted.The experimental results show that the proposed method is closer to the process of human visual attention and demonstrate its effectiveness and robustness.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28