检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡文彪[1] 夏立[1] 向东阳[1] 吴正国[1]
机构地区:[1]海军工程大学电气与信息工程学院,武汉430033
出 处:《振动与冲击》2012年第1期162-166,共5页Journal of Vibration and Shock
基 金:国家自然科学基金项目(50677069)
摘 要:采用相位差校正法进行频谱校正,对幅值进行校正需要依赖于窗函数的谱函数。而实际上很多窗函数都十分复杂,其谱函数的解析表达式难以取得。该文提出基于相位差法取得频率修正量后,可以将原加窗序列乘以一个由频率修正量产生的复数序列,相当于进行一个小的频移,产生一个新的序列。新序列的信号频率正好对准离散频谱上的某一根谱线,不会产生泄漏。因此在幅值校正时不需要依赖窗函数的谱函数,通用性好。仿真研究和应用实例表明,采用该文提出的方法,选择合适的窗函数,即使是密集分布的频谱,也可以达到理想的校正精度。Amplitude correction was dependent upon spectral functions of window functions, when the phase difference correction method was employed to correct frequency spectra. However, many window functions were very complex actually and the analytic expressions of their spectral function could not be obtained. A novel amplitude correction method was proposed here. After frequency correction value was calculated based on the phase difference correction method, a new numerical sequence could be obtained by multiplying the original sequence with a complex number sequence produced by the frequency correction value. Then, the signal frequency of the new sequence just aimed at a certain spectral line, and the frequency spectral analysis didn't cause a leak for frequency spectra. So, the amplitude correction didn't depend on the spectral functions of window functions. Numerical simulation results and application examples demonstrated that the ideal correction precision can be reached even for frequency spectra with dense distribution by using the proposed method and choosing an appropriate window function.
分 类 号:TN991.6[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.95.186