一种基于邻域距离的聚类特征选择方法  被引量:9

Clustering Feature Selection Method Based on Neighborhood Distance

在线阅读下载全文

作  者:秦奇伟[1,2] 梁吉业[1,2] 钱宇华[1,2] 

机构地区:[1]计算智能与中文信息处理教育部重点实验室,太原030006 [2]山西大学计算机与信息技术学院,太原030006

出  处:《计算机科学》2012年第1期175-177,共3页Computer Science

摘  要:针对高维复杂的符号数据集在聚类中的聚类效果差和计算耗时过大的问题,首先提出了一种基于邻域距离的无监督特征选择算法,然后在选择到的特征子集上进行重新聚类,从而有效提高了聚类结果的精度,降低了聚类计算的计算耗时。实验结果表明,该算法可以找到有效的特征子集,提高数据集的聚类精度,降低面对高维复杂数据集聚类的计算耗时。To overcome the limitation of bad results on clustering and time-consuming of existing clustering algorithm to high-dimensional data,we provided an unsupervised feature selection algorithm based on neighborhood distance,then we clustered again on the selected feature subset.The use of the selected feature subset can improve clustering accuracy.The results of the experiment show that the method can find the valid features,and also improve the time-consuming problems in clustering on high-dimensional data.

关 键 词:特征选择 聚类计算 邻域距离 属性重要度 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象