检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程维虎[1] 戴家佳[2] 杨振海[1] 张国志[3]
机构地区:[1]北京工业大学应用数理学院,北京100124 [2]贵州大学理学院,贵州贵阳550025 [3]哈尔滨理工大学,黑龙江哈尔滨150080
出 处:《数理统计与管理》2012年第1期32-54,共23页Journal of Applied Statistics and Management
基 金:北京工业大学人才强教计划-211工程-服务北京优秀团队项目(编号:00600054R0001)资助;2010年北京市教委科技面上基金项目(编号:KM201010005006)资助;贵州省科学技术基金项目(编号:[2009]2063)资助;贵州大学引进人才科研项目(编号:(2009)070)资助;黑龙江省教育厅项目(编号:11551094)
摘 要:众所周知统计推断有三种理论:普遍承认的Neyman理论(频率学派),Bayes推断和信仰推断(Fiducial)。Bayes推断基于后验分布,由先验分布和样本分布求得。信仰推断是基于信仰分布(Confidence Distribution,简称CD),直接利用样本求得。两者推断方式一致,都是用分布函数作推断,称为分布推断。从分析传统的参数估计、假设检验特性来看,经典统计推断也可以视为分布推断。通常将置信上限看做置信度的函数。其反函数,即置信度是置信上界的函数,恰是分布函数,该分布恰是近年来引起许多学者兴趣的CD。在本文中,基于随机化估计(其分布是一CD)的概率密度函数,提出VDR检验。常见正态分布期望或方差的检验,多元正态分布期望的Hoteling检验等是其特例。VDR(vertical density representation)检验适合于多元分布参数检验,实现了非正态的多元线性变换分布族的参数检验。VDR构造的参数的置信域有最小Lebesgue测度。There are three way of statistical inference, Neyman's theory, Bayes's throry and Fiducial inference. R.A.Fisher proposed fiducial probability distribution as his alternative to Bayesian posterior prabability distribution. Posterior distribution are determined by prior distribytion and sample, while fiducial distribution are obtained derictly from sample. They infer parameters by distributions and Neyman's infrence of paprameters consider as inference by CD(Confidence Distribution). If consider the reasoning leading to fidicial probability density, then there is little wonder that Fisher caused such puzzles with his novel idea. We use random vector(randomized estimator) defined by using pivotal quantity to estimate parameters and the prabability density of randomized estimator is just the fiducial density and it avoid Fisher puzzles. We proposed VDR(Vetical Density Representation) test by the density and VDR theory. The classical tests will be derived when appliy VDR test to certain case, for example t-test, Hoteling test on multinormal mean vextor etc. and some new test are also derived, for example, test covariance matrix of multinormal normal distributions. The confidence rigion constructed by VDR has the smmalest Lebesgue measure, it will be called minimum confidence rigion with Lebesgue measure.
关 键 词:随机推断 VDR检验 最小Lebesgue测度置信域
分 类 号:O212[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222