基于二分递推SVD的信号奇异性位置精确检测  被引量:13

Accurate Detection of Signal Singularity Position Based on Dichotomizing Recursion SVD

在线阅读下载全文

作  者:赵学智[1] 叶邦彦[1] 

机构地区:[1]华南理工大学机械与汽车工程学院,广东广州510640

出  处:《电子学报》2012年第1期53-59,共7页Acta Electronica Sinica

基  金:国家自然科学基金(No.50875086);中央高校基本科研业务费专项资金(No.2009ZM0287);广州市科技计划(No.2008J1-C101)

摘  要:提出利用信号构造行数为2的矩阵,在奇异值分解后保留小奇异值对应的分量,并取大奇异值所对应的分量信号重复构造相同矩阵进行奇异值分解,从而将原始信号分解为一组分量信号.这种分量信号具有二阶消失矩,可实现对原始信号中Lipschitz指数为0和1的奇异性的位置精确检测,其检测脉宽小,且在同一层分量中指示奇异点位置的模极大值和奇异点处的突变量、转折斜率具有正比线性关系.此法克服了小波变换检测结果的位置偏移和脉冲宽大的缺陷,在对铣削力信号的处理中,准确地检测出了其中的微弱冲击.It is proposed that a matrix with row number 2 is created by original signal and is processed by singular value de- composition (SVD),the component signal corresponding to the small singular value is retained, while the one corresponding to the big singular value is continuously used to create the same matrix to be continuously processed by SVD, by this way original signal can be decomposed into a group of cornponent signals, which have the second order vanishing moment and can detect the accurate position of singularity with Lipschitz index 0 and 1 in original signal.Furthermore,the width of their detection impulse is small,and the modulus maxima in the component signals of the same level are proportional to the quantity of sudden change and the turning slope in the singular point. The defects of wavelet singularity detection, i. e. the deviation of singularity position and big width of detection imoulse, are overcome and the faint imoacts in the mininz force signal are accurately detected by this method.

关 键 词:奇异值分解 二分递推矩阵构造 奇异性检测 信号处理 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象