Tightly-coupled model for INS/WSN integrated navigation based on Kalman filter  被引量:2

基于Kalman滤波器的INS/WSN紧组合导航系统模型(英文)

在线阅读下载全文

作  者:徐元[1] 陈熙源[2] 

机构地区:[1]东南大学仪器科学与工程学院,南京210096 [2]东南大学微惯性仪表与先进导航技术教育部重点实验室,南京210096

出  处:《Journal of Southeast University(English Edition)》2011年第4期384-387,共4页东南大学学报(英文版)

基  金:The National Basic Research Program of China(973 Program)(No.2009CB724002);the National Natural Science Foundation of China(No.50975049);the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110092110039);the Aviation Science Foundation(No.20090869008);the Six Peak Talents Foundation in Jiangsu Province(No.2008143);Program of Scientific Innovation Research of College Graduate in Jiangsu Province(No.CXLX_0101)

摘  要:Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightly-coupled integration based on the Kalman filter (KF). When the WSN is available, the difference between the distances from the blind node(BN) to the reference nodes (RNs) measured by the INS and those measured by the WSN are used as measurement information for the KF due to its better observability and independence, which can effectively improve the accuracy of the KF. Simulations show that the proposed approach reduces the mean error of the position by about 50% compared with loosely-coupled integration, while the mean error of the velocity is a little higher than that of loosely-coupled integration.在基于惯性导航系统和无线传感器网络的组合导航系统中,为了解决传统导航信息松组合方法中测量信息可观性较差的问题,提出了一种基于卡尔曼滤波器的导航信息紧组合模型.当无线传感器网络的信号可用时,组合导航系统将惯性导航系统测量得到的未知节点与已知节点的距离与无线传感器网络测量得到的距离作差,差值作为卡尔曼滤波器的测量信息.由于新测量信息具有更好的可观性和独立性,该方法有效地提高了卡尔曼滤波器的准确度.仿真结果显示,提出的方法平均位置误差比松组合方法降低50%左右,但平均速度误差却略高于松组合方式.

关 键 词:inertial navigation system (INS) wireless sensor network(WSN) tightly-coupled integration Kalman filter 

分 类 号:TN967.3[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象