检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Journal of Southeast University(English Edition)》2011年第4期394-399,共6页东南大学学报(英文版)
基 金:The National Natural Science Foundation of China(No.50875078);the Natural Science Foundation of Jiangsu Province(No.BK2007115);the National High Technology Research and Development Program of China(863 Program)(No.2007AA04Z421)
摘 要:Aiming at the slow convergence and low accuracy problems of the traditional non-negative tensor factorization, a local hierarchical non-negative tensor factorization method is proposed by applying the local objective function theory to non- negative tensor factorization and combining the three semi-non- negative matrix factorization(NMF) model. The effectiveness of the method is verified by the facial feature extraction experiment. Through the decomposition of a series of an air compressor's vibration signals composed in the form of a bispectrum by this new method, the basis images representing the fault features and corresponding weight matrices are obtained. Then the relationships between characteristics and faults are analyzed and the fault types are classified by importing the weight matrices into the BP neural network. Experimental results show that the accuracy of fault diagnosis is improved by this new method compared with other feature extraction methods.针对传统非负张量分解收敛速度慢,分解精度低的难题,结合three semi-NMF模型,将局部目标函数理论应用于非负张量分解中,提出了基于局部分层的非负张量分解算法,并通过人脸特征提取实验验证了算法的有效性.通过对由空压机不同故障振动信号的双谱构成的张量按该算法分解,得到反映故障特征的基图像及与基图像对应的权值矩阵,建立了特征与故障频率之间的对应关系,并将权值矩阵输入到BP神经网络中对故障进行分类.同时将该方法与其他特征提取方法相比较,实验结果表明该方法有效地提高了空压机故障诊断精度.
关 键 词:non-negative tensor factorization BISPECTRUM feature extraction air compressor BP neural network
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.38.11