检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]陕西师范大学数学与信息科学学院,陕西西安710062 [2]汉中职业技术学院计算机科学与技术系,陕西汉中723000
出 处:《模糊系统与数学》2011年第6期53-59,共7页Fuzzy Systems and Mathematics
基 金:国家自然科学基金资助项目(10871121);陕西省师范大学重点科研基金资助项目(995130)
摘 要:利用公式的ΣΓ-真度(文中称为相对真度)理论,在模糊命题逻辑系统Ln*中提出了任意理论Γ相对于特定理论Γ0的相对发散度和ηΓ0-相容度概念。对于有限理论,给出了其相对于特定理论Γ0的δΓ0-相容度概念,并对两种相容度的性质作了初步探究,揭示了二者之间的内在联系。同时给出任意理论Γ相对于特定理论Γ0的相容、不相容及完全相容的定义及其等价刻画。Utilizing the theory of ∑Г-truth degree which is called relative truth degree, the concepts of relative divergence degree and tηГ0 --consistency degree of any theory Г relative to the fixed theory -To are introduced in the fuzzy propositional logic system Ln^* . For finite theories, the concept of δГ0 --consistency degree is given and properties of these two kinds of relative consistency degree are preliminarily explored, then the intrinsic links between these two kinds of relative consistency degree are obtained. Simultaneously, the concepts of consistent theory, inconsistent theory and fully consistent theory relative to the fixed theory Г0 are defined, and the equivalent characterizations of them are obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222