出 处:《Science China Earth Sciences》2012年第2期262-270,共9页中国科学(地球科学英文版)
基 金:supported by National Natural Science Foundation of China (Grant No. 41076132);the Program of China Polar Environment Investigation and Assessment (2011–2015)
摘 要:The vertical structure of the atmospheric ozone and temperature as well as the seasonal variations is presented by using ozone sounding data at Zhongshan Station over East Antarctica from February, 2008 to February, 2009. The results show that the heights of thermal tropopause and ozone tropopause are mostly the same with yearly mean 7.9 and 7.4 km separately above the station. There is obvious seasonal variation in the pressure and temperature of the tropopause, manifested by the clear one-wave pattern with an opposite phase. As the turning point of the tropopause temperature is visible in autumn and faint in spring and winter, the tropopause height can be better confirmed by utilization of the changes of ozone. Seasonal variation of the tropospheric ozone of vertical distribution is not clear, relative to stratosphere. In the spring, ozone in the low level of stratosphere lost seriously. The minimum partial ozone in 14 km was 1.57 MPa only and the maximum partial ozone occurred in the up level stratosphere. In the rest of the season the ozone increases with height rising in the low level of stratosphere. The evidence shows that ozone lost in spring is closely related with low temperature of polar night and the process of PSC photochemical destruction ozone in the stratosphere. From the vertical characteristics and seasonal variation of ozone and temperature, it is meaningful to understand formation and development of Antarctic ozone deletion.The vertical structure of the atmospheric ozone and temperature as well as the seasonal variations is presented by using ozone sounding data at Zhongshan Station over East Antarctica from February, 2008 to February, 2009. The results show that the heights of thermal tropopause and ozone tropopause are mostly the same with yearly mean 7.9 and 7.4 km separately above the station. There is obvious seasonal variation in the pressure and temperature of the tropopause, manifested by the clear one-wave pattern with an opposite phase. As the turning point of the tropopause temperature is visible in autumn and faint in spring and winter, the tropopause height can be better confirmed by utilization of the changes of ozone. Seasonal variation of the tropospheric ozone of vertical distribution is not clear, relative to stratosphere. In the spring, ozone in the low level of stratosphere lost seriously. The minimum partial ozone in 14 km was 1.57 MPa only and the maximum partial ozone occurred in the up level stratosphere. In the rest of the season the ozone increases with height rising in the low level of stratosphere. The evidence shows that ozone lost in spring is closely related with low temperature of polar night and the process of PSC photochemical destruction ozone in the stratosphere. From the vertical characteristics and seasonal variation of ozone and temperature, it is meaningful to understand formation and development of Antarctic ozone deletion.
关 键 词:ANTARCTICA atmospheric ozone and temperature vertical structure seasonal variation
分 类 号:P421.33[天文地球—大气科学及气象学] S718.542[农业科学—林学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...