A thermal physical index to explore current tectonic activity with satellite remote sensing  

A thermal physical index to explore current tectonic activity with satellite remote sensing

在线阅读下载全文

作  者:CHEN ShunYun MA Jin LIU PeiXun LIU LiQiang HU XiaoYan 

机构地区:[1]State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration,Beijing 100029,China

出  处:《Science China Earth Sciences》2012年第2期290-295,共6页中国科学(地球科学英文版)

基  金:supported by National Natural Science Foundation of China (Grant No. 40902095);Basic Research Funds from the Institute of Geology, China Earthquake Administration (Grant No. DF-IGCEA-0608-2-6);the State Key Laboratory of Earthquake Dynamics (Project No. LED2009A07)

摘  要:The use of satellite thermal infrared information is being developed as a method of exploring current tectonic activity. To realize real world application, an objective, stable and testable thermal physical index that is simultaneously related with tectonic activity must be established. From the viewpoint of the energy balance, the land surface is a boundary where energy is exchanged between outer space and the solid Earth. Regardless of how complex the influencing factors are, the land surface is mainly affected by the Sun, atmosphere and underground heat. In this paper, first, the relationships among land surface temperature, solar radiation, atmospheric temperature and thermal information from underground are obtained employing a mathematic physical method based on the equation of heat conduction and energy balance at the land surface. Second, a thermal physical index called the geothermal flux index (GFI), which can provide the activity state of underground heat, is constructed. Third, the theoretical basis of the thermal physical index is verified using stable annual variations in land surface temperature and solar radiation. Finally, combined with known crustal deformations derived using a global positioning system, the effectiveness of the GFI in extracting field tectonic motion is tested. The results indicate that the GFI is effective in providing information on current tectonic activity.The use of satellite thermal infrared information is being developed as a method of exploring current tectonic activity. To realize real world application, an objective, stable and testable thermal physical index that is simultaneously related with tectonic activity must be established. From the viewpoint of the energy balance, the land surface is a boundary where energy is exchanged between outer space and the solid Earth. Regardless of how complex the influencing factors are, the land surface is mainly affected by the Sun, atmosphere and underground heat. In this paper, first, the relationships among land surface temperature, solar radiation, atmospheric temperature and thermal information from underground are obtained employing a mathematic physical method based on the equation of heat conduction and energy balance at the land surface. Second, a thermal physical index called the geothermal flux index (GFI), which can provide the activity state of underground heat, is constructed. Third, the theoretical basis of the thermal physical index is verified using stable annual variations in land surface temperature and solar radiation. Finally, combined with known crustal deformations derived using a global positioning system, the effectiveness of the GFI in extracting field tectonic motion is tested. The results indicate that the GFI is effective in providing information on current tectonic activity.

关 键 词:current tectonic activity thermal physical index geothermal flux index remote sensing 

分 类 号:P315.2[天文地球—地震学] TQ342.206[天文地球—固体地球物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象