Backward Doubly Stochastic Differential Equations with Jumps and Stochastic Partial Differential-Integral Equations  被引量:5

Backward Doubly Stochastic Differential Equations with Jumps and Stochastic Partial Differential-Integral Equations

在线阅读下载全文

作  者:Qingfeng ZHU Yufeng SHI 

机构地区:[1]School of Mathematics,Shandong University,Jinan 250100,China School of Statistics and Mathematics,Shandong University of Finance and Economics,Jinan 250014,China [2]School of Mathematics,Shandong University,Jinan 250100,China

出  处:《Chinese Annals of Mathematics,Series B》2012年第1期127-142,共16页数学年刊(B辑英文版)

基  金:supported by the National Natural Science Foundation of China (Nos. 10771122,11071145);the Shandong Provincial Natural Science Foundation of China (No. Y2006A08);the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No. 10921101);the National Basic Research Program of China (the 973 Program) (No. 2007CB814900);the Independent Innovation Foundation of Shandong University (No. 2010JQ010)

摘  要:Backward doubly stochastic differential equations driven by Brownian motions and Poisson process (BDSDEP) with non-Lipschitz coefficients on random time interval are studied. The probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs) is treated with BDSDEP. Under non-Lipschitz conditions, the existence and uniqueness results for measurable solutions to BDSDEP are established via the smoothing technique. Then, the continuous depen- dence for solutions to BDSDEP is derived. Finally, the probabilistic interpretation for the solutions to a class of quasilinear SPDIEs is given.

关 键 词:Backward doubly stochastic differential equations Stochastic partialdifferential-integral equations Random measure Poisson process 

分 类 号:O211.63[理学—概率论与数理统计] O175.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象