Multicopy quantum state discrimination  被引量:1

Multicopy quantum state discrimination

在线阅读下载全文

作  者:ZHANG WenHai YU LongBao YANG Ming ZhuoLiang 

机构地区:[1]Department of Physics, Huainan Normal University, Huainan 232038, China [2]Department of Physics and Electronic Engineering, Hefei Teachers College, Hefei 230061, China [3]School of Physics and Material Science Anhui University Hefei 230039 China

出  处:《Science China(Physics,Mechanics & Astronomy)》2012年第1期60-65,共6页中国科学:物理学、力学、天文学(英文版)

基  金:supported by the National Natural Science Foundation of China (Grant No. 10704001);the Natural Science Foundation of the Education Department of Anhui Province of China (Grant Nos. KJ2010ZD08 and KJ2010B204);the Doctor Research Start-Up Program of Huainan Normal University

摘  要:In this paper, we study the problem of multicopy quantum two-state discrimination. By exploring the quantum hypothesis testing, i.e., the probabilisfic quantum cloning, we derive the upper bounds of the minimal error discrimination (MED) and the optimal unambiguous discrimination (OUD), which coincides with the Helstrom theorem and the JS limit. Furthermore, when prior probabilities are unknown, we derive the minimax MED and the minimax OUD. Based on the optimal NM probabilistic quantum cloning, we present the optimal strategies of collective measurements of the MED and the OUD. When the number of the copies is infinite, regardless of whether prior probabilities are known or not, the success probabilities of the MED and the OUD go to 100%, in accordance with the quantum measurement hypothesis that unknown quantum state can be determined if and only if infinite identical quantum state copies are given.In this paper, we study the problem of multicopy quantum two-state discrimination. By exploring the quantum hypothesis testing, i.e., the probabilistic quantum cloning, we derive the upper bounds of the minimal error discrimination (MED) and the optimal unambiguous discrimination (OUD), which coincides with the Helstrom theorem and the JS limit. Furthermore, when prior probabilities are unknown, we derive the minimax MED and the minimax OUD. Based on the optimal N→M probabilistic quantum cloning, we present the optimal strategies of collective measurements of the MED and the OUD. When the number of the copies is infinite, regardless of whether prior probabilities are known or not, the success probabilities of the MED and the OUD go to 100%, in accordance with the quantum measurement hypothesis that unknown quantum state can be determined if and only if infinite identical quantum state copies are given.

关 键 词:quantum state discrimination Helstrom theorem JS limit minimal error discrimination (MED) optimal unambiguousdiscrimination (OUD) 

分 类 号:O413.1[理学—理论物理] Q785[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象