Effects of the East Asian Summer Monsoon on Tropical Cyclone Genesis over the South China Sea on an Interdecadal Time Scale  被引量:9

Effects of the East Asian Summer Monsoon on Tropical Cyclone Genesis over the South China Sea on an Interdecadal Time Scale

在线阅读下载全文

作  者:王鑫 周文 李崇银 王东晓 

机构地区:[1]Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment,City University of Hong Kong [2]State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences [3]Meteorological College, PLA University of Science and Technology [4]State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology,Chinese Academy of Sciences

出  处:《Advances in Atmospheric Sciences》2012年第2期249-262,共14页大气科学进展(英文版)

基  金:sponsored by the National Basic Research Program of China (also called 973 Program, Grant Nos 2011CB403504 and 2010CB950400);National Natural Science Foundation of China (Grant Nos U0833602, U0733002 and 40906010);Hong Kong Croucher Foundation (Grant No 9220055);City University of Hong Kong (Strategic Research Grant No 7002717);Key Laboratory of Tropical Marine Environmental Dynamics (LED), Chinese Academy of Sciences (Grant No LED0804)

摘  要:Tropical cyclone (TC) genesis over the South China Sea (SCS) during 1965–2004 was analyzed. The locations of TC genesis display evident seasonal changes, with the mean position of formation situated north of 15 °N in summer (June–July–August) and south of 15 °N in autumn (September–October–November). The TC genesis in summer underwent dramatic interdecadal variations, with more and less TC frequency during 1965–1974/1995–2004 and 1979–1993, respectively. In contrast, a significant interannual variation of TC genesis with a period of ~4 years was observed in autumn. This study investigated the relationship of SCS TC genesis to the East Asian jet stream (EAJS) and the western North Pacific subtropical high (WNPSH) on an interdecadal time scale. Analysis and comparison of the impacts of the EAJS and the WNPSH on vertical wind shear changes indicate that changes in the WNPSH and EAJS intensity rather than EAJS meridional location are responsible for changes in TC genesis on an interdecadal time scale. Corresponding to a weaker EAJS, anomalous Rossby wave energy at upper levels displays equatorward propagation at midlatitudes and poleward propagation in the subtropics. This induces anomalous convergence and divergence of wave activity fluxes in East Asia around 30 °N and the SCS, respectively. The anomalous divergence of wave activity fluxes reduces easterlies at upper levels over the SCS, which is favorable to TC genesis.Tropical cyclone (TC) genesis over the South China Sea (SCS) during 1965–2004 was analyzed. The locations of TC genesis display evident seasonal changes, with the mean position of formation situated north of 15 °N in summer (June–July–August) and south of 15 °N in autumn (September–October–November). The TC genesis in summer underwent dramatic interdecadal variations, with more and less TC frequency during 1965–1974/1995–2004 and 1979–1993, respectively. In contrast, a significant interannual variation of TC genesis with a period of ~4 years was observed in autumn. This study investigated the relationship of SCS TC genesis to the East Asian jet stream (EAJS) and the western North Pacific subtropical high (WNPSH) on an interdecadal time scale. Analysis and comparison of the impacts of the EAJS and the WNPSH on vertical wind shear changes indicate that changes in the WNPSH and EAJS intensity rather than EAJS meridional location are responsible for changes in TC genesis on an interdecadal time scale. Corresponding to a weaker EAJS, anomalous Rossby wave energy at upper levels displays equatorward propagation at midlatitudes and poleward propagation in the subtropics. This induces anomalous convergence and divergence of wave activity fluxes in East Asia around 30 °N and the SCS, respectively. The anomalous divergence of wave activity fluxes reduces easterlies at upper levels over the SCS, which is favorable to TC genesis.

关 键 词:tropical cyclone subtropical jet stream South China Sea 

分 类 号:P444[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象