An RLC interconnect analyzable crosstalk model considering self-heating effect  

An RLC interconnect analyzable crosstalk model considering self-heating effect

在线阅读下载全文

作  者:Zhu Zhang-Ming Liu Shu-Bin 朱樟明;刘术彬(School of Microelectronics,Xidian University,Xi'an 710071,China)

机构地区:[1]School of Microelectronics,Xidian University,Xi'an 710071,China

出  处:《Chinese Physics B》2012年第2期552-560,共9页中国物理B(英文版)

基  金:supported by the National Natural Science Foundation of China (Grant Nos.60725415 and 60971066)

摘  要:According to the thermal profile of actual multilevel interconnects, in this paper we propose a temperature distribution model of multilevel interconnects and derive an analytical crosstalk model for the distributed resistance inductance-capacitance (RLC) interconnect considering effect of thermal profile. According to the 65-nm complementary metal-oxide semiconductor (CMOS) process, we compare the proposed RLC analytical crosstalk model with the Hspice simulation results for different interconnect coupling conditions and the absolute error is within 6.5%. The computed results of the proposed analytical crosstalk model show that RCL crosstalk decreases with the increase of current density and increases with the increase of insulator thickness. This analytical crosstalk model can be applied to the electronic design automation (EDA) and the design optimization for nanometer CMOS integrated circuits.According to the thermal profile of actual multilevel interconnects, in this paper we propose a temperature distribution model of multilevel interconnects and derive an analytical crosstalk model for the distributed resistance inductance-capacitance (RLC) interconnect considering effect of thermal profile. According to the 65-nm complementary metal-oxide semiconductor (CMOS) process, we compare the proposed RLC analytical crosstalk model with the Hspice simulation results for different interconnect coupling conditions and the absolute error is within 6.5%. The computed results of the proposed analytical crosstalk model show that RCL crosstalk decreases with the increase of current density and increases with the increase of insulator thickness. This analytical crosstalk model can be applied to the electronic design automation (EDA) and the design optimization for nanometer CMOS integrated circuits.

关 键 词:multilevel interconnects temperature distribution RLC crosstalk 

分 类 号:TN432[电子电信—微电子学与固体电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象