机构地区:[1]Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education,Shandong University,Jinan 250061,China [2]School of Chemistry and Chemical Engineering,Qufu Normal University,Qufu 273165,China
出 处:《Chinese Science Bulletin》2012年第1期33-40,共8页
基 金:supported by the National Basic Research Program of China(2007CB613901);the National Natural Science Foundation of China(50871062 and 50831003);the Natural Science Foundation of Shandong Province(Z2008F08)
摘 要:The amorphous Fe78Si9B13 alloy was used as a heterogeneous Fenton catalyst in the process of phenol degradation.The influences of main operating parameters such as reaction temperature,catalyst amount,hydrogen peroxide dosage and initial pH of solution on phenol degradation rate were investigated.The maximum mineralization of phenol was achieved at 60°C,6 g/L Fe78Si9B13, 0.31 mol/L hydrogen peroxide,with an initial pH of 2.5.More than 99%of phenol was completely removed under the optimum conditions within 10 min for a solution containing 1000 mg/L of phenol.Batch experiments for solutions containing phenol con- centrations ranging from 50 to 2000 mg/L were investigated under the above conditions and the same excellent degradation rate was obtained.The Fe78Si9B13 showed better catalytic activity than iron powder and Fe 2+ .Addition of n-butannol(hydroxyl radical scavenger)decreased the degradation rate of phenol,which demonstrates that hydroxyl radicals were mainly responsible for the removal of phenol.We demonstrated that phenol may be degraded by hydroxyl radicals decomposed by hydrogen peroxide on the surface of Fe78Si9B13 and illustrated the reaction mechanism for this process.This amorphous alloy exhibited high stability in recycling experiments and showed excellent reuse performance even after continuous operations of 8 cycles.The amorphous Fe78Si9B13 alloy was used as a heterogeneous Fenton catalyst in the process of phenol degradation. The influences of main operating parameters such as reaction temperature, catalyst amount, hydrogen peroxide dosage and initial pH of solution on phenol degradation rate were investigated. The maximum mineralization of phenol was achieved at 60C, 6 g/L Fe78Si9B13, 0.31 mol/L hydrogen peroxide, with an initial pH of 2.5. More than 99% of phenol was completely removed under the optimum conditions within 10 min for a solution containing 1000 mg/L of phenol. Batch experiments for solutions containing phenol concentrations ranging from 50 to 2000 mg/L were investigated under the above conditions and the same excellent degradation rate was obtained. The FeTsSigB13 showed better catalytic activity than iron powder and Fe2+. Addition of n-batannol (hydroxyl radical scavenger) decreased the degradation rate of phenol, which demonstrates that hydroxyl radicals were mainly responsible for the removal of phenol. We demonstrated that phenol may be degraded by hydroxyl radicals decomposed by hydrogen peroxide on the surface of Fe78Si9B13 and illustrated the reaction mechanism for this process. This amorphous alloy exhibited high stability in recycling experiments and showed excellent reuse performance even after continuous operations of 8 cycles.
关 键 词:FE78SI9B13 苯酚溶液 催化氧化 非晶 合金 过氧化氢分解 催化剂用量 初始PH值
分 类 号:X783.03[环境科学与工程—环境工程] TG139.8[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...