检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:JU ShengHong LIANG XinGang
出 处:《Chinese Science Bulletin》2012年第2期294-298,共5页
基 金:supported by the National Natural Science Foundation of China (50776053 and 50730006)
摘 要:At present,there have been few direct molecular dynamics simulations on the thermal conductivity of polycrystalline nanofilms.In this paper,we generate polycrystalline argon nanofilms with random grain shape using the three-dimensional Voronoi tessellation method.We calculate the out-of-plane thermal conductivity of a polycrystalline argon nanofilm at different temperatures and film thicknesses by the Muller-Plathe method.The results indicate that the polycrystalline thermal conductivity is lower than that of the bulk single crystal and the single-crystal nanofilm of argon.This can be attributed to the phonon mean-free-path limit imposed by the average grain size as well as the grain boundary thermal resistance due to the existence many grain boundaries in polycrystalline materials.Also,the out-of-plane thermal conductivity of the polycrystalline argon nanofilm is insensitive to temperature and film thickness,and is mainly dominated by the grain size,which is quite different from the case of single-crystal nanofilms.At present, there have been few direct molecular dynamics simulations on the thermal conductivity of polycrystalline nanofilms. In this paper, we generate polycrystalline argon nanofilms with random grain shape using the three-dimensional Voronoi tessellation method. We calculate the out-of-plane thermal conductivity of a polycrystalline argon nanofilm at different temperatures and film thicknesses by the Muller-Plathe method. The results indicate that the polycrystalline thermal conductivity is lower than that of the bulk single crystal and the single-crystal nanofilm of argon. This can be attributed to the phonon mean-free-path limit imposed by the average grain size as well as the grain boundary thermal resistance due to the existence many grain boundaries in polycrystalline materials. Also, the out-of-plane thermal conductivity of the polycrystalline argon nanofilm is insensitive to temperature and film thickness, and is mainly dominated by the grain size, which is quite different from the case of single-crystal nanofilms.
关 键 词:纳米薄膜 平面导热 氩气 平均晶粒尺寸 分子动力学模拟 VORONOI 多晶体材料 原子
分 类 号:TQ116.43[化学工程—无机化工] TB383[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222