检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]复旦大学计算机科学技术学院,上海200433
出 处:《小型微型计算机系统》2012年第2期206-209,共4页Journal of Chinese Computer Systems
摘 要:由于数据的不确定性,传统频繁模式挖掘方法难以适用到不确定性数据中.针对不确定性数据的特点,把挖掘确定性数据频繁模式的经典垂直挖掘算法Eclat算法扩展到不确定性数据中,提出了UP-Eclat算法.该算法分别对Tid集和项集搜索树进行扩展:把原来只有一个id域的Tid扩展成两个域,即id域和概率域;用扩展后的Tid集代替原来的Tid集,生成扩展后的项集搜索树.扩展后的Tid集可以表示不确定性数据,然后利用扩展后的项集搜索树进行频繁模式挖掘.通过实验与分析,UP-Eclat算法可行,高效.Because of the uncertainty, the traditional way of mining frequent patterns is not available in uncertain data. As a result, this paper extends the classic vertical mining algorithm Eclat for mining frequent pattems from uncertain data and then proposes UP- Eclat algorithm. This algorithm extends the tidset as well as the itemset search tree. The Tid that contains only one id field is extended to a new Tid that contains both id field and probability field. Then the extended itemset search tree is consisted of the new tidset. The extended ddset can describe uncertain data, and the extended itemset search tree is built to mine the frequent patterns. The UP-Eclat algorithm is proved to be efficient according to the experimentation.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.215