检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:侯勇俊[1]
机构地区:[1]西南石油大学机电工程学院,四川成都610500
出 处:《西南交通大学学报》2012年第1期104-108,共5页Journal of Southwest Jiaotong University
基 金:国家自然科学基金资助项目(51074132);四川省青年科技基金资助项目(04ZQ026-015)
摘 要:利用振动筛的运动微分方程和两激振器的回转运动方程,建立了双轴二倍频自同步振动筛同步相位差角的微分方程;通过研究该微分方程状态方程的平衡点,提出了振动筛实现二倍频自同步的必要条件,应用Lyapunov稳定性理论,建立了振动筛的运动稳定性条件,并通过实例计算进行了验证.结果表明:振动筛满足同步条件和稳定性条件时可以实现二倍频的自同步并稳定运转;当扭振固有角频率与低速轴激振角频率之比的平方等于4/7时,振动筛处于临界状态,当该值小于4/7时,振动筛的运动稳定.Differential equations of phase angle differences between two exciting shafts of a bi-frequency self-synchronous shaker were derived based on the differential equations of shaker motion and those of rotation of the two exciting shafts.The necessary conditions for self-synchronization of the two shafts was obtained by finding the equilibrium point of the status equations,and the stability condition of the shaker was determined by applying the Lyapunov stability theory.A simulation example was presented.The results show that the second power of ratio of the natural torsional frequency of shaker to the exciting frequency of lower speed shaft is a criterion(4/7 in this example),below the criterion the motion of the shaker is stable.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.102.140