检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国石油新疆油田分公司风城油田作业区,新疆克拉玛依834000 [2]"油气藏地质及开发工程"国家重点实验室.西南石油大学,四川成都610500
出 处:《西南石油大学学报(自然科学版)》2012年第1期108-114,共7页Journal of Southwest Petroleum University(Science & Technology Edition)
基 金:中国石油总公司重点工程攻关项目(971007110165)
摘 要:针对传统储层伤害试井评价的污染带渗透率求取存在较大偏差,进而影响表皮系数准确分解的问题,建立了改进的麦金利图版试井分析新模型,利用拉普拉斯变换进行了求解,并编程绘制了新的分析理论图版(改进的麦金利图版),获得了新的拟合解释方法,可以非常准确地求取污染带渗透率。再利用Hawkins公式,优化计算真表皮系数和污染半径,从而利用污染带渗透率、污染半径和真表皮系数进行储层伤害试井评价。最后,进行了实例分析,结果符合现场实际,为改善储层、采取措施提供了依据。A reasonable and precise formation damage evaluation is of great significance in guiding the development ofoil and gas reservoir. The conventional method for formation damage evaluation mainly depends on skin factor and the McKinley type curves match, by which the permeability of the damaged zone can be calculated. However, because of the solution ambiguity of the McKinley match, this method may result in great deviation, which further influences the accuracy of decomposition of skin factor. A new model of modified McKinley well testing analysis method is established, and then its solution is got by the Laplace transformation. Moreover, the new theoretical type curves (the modified McKinley type curves) are drawn up by programming. Eventually a new analysis method of matching that can precisely calculate the permeability of damaged zone is obtained. Hawkins formula is used to calculate true shin factor and the damaged radius, and on the basis of we evaluate formation damage of well testing permeability of the damaged zone, true shin factor and the damaged radius. Finally the cases of real oil wells are illustrated and the results accord with the fact, which can be references to formation improvements and measures taking.
关 键 词:污染带渗透率 真表皮系数 污染带半径 储层伤害评价 试井
分 类 号:TE343[石油与天然气工程—油气田开发工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222