检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩传峰[1] 孟令鹏[1] 张超[1] 孔静静[1]
机构地区:[1]同济大学城市建设与应急管理研究所,上海200092
出 处:《系统工程理论与实践》2012年第2期366-372,共7页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(70871093;91024023);上海市重点学科建设项目(B310)
摘 要:针对反恐设施选址问题,考虑反恐设施点准备时间及反恐物资的运送时间对核生化恐怖袭击损失的影响,构建完全信息非合作动态博弈模型.讨论连续选取单个设施点和离散选取多个设施点的不同情形,应用遗传算法求解子博弈精炼纳什均衡.以上海市区县网络为例的仿真结果表明.交互式设置反恐设施点和减小反应时间均能有效减小袭击损失,并随设施点增多,损失减小幅度趋缓.该模型反映了政府与恐怖组织间的战略交互,为反恐设施选址提供了一种有效的分析方法.Contraposed to the characteristic of location problem for the terror response facilities, we consider the responding time and the carrying time synthetically, taking full account of the loss caused by nuclear and biochemical terrorist attack and set up a noncooperate game model. One and fixed number of facilities are considered respectively, and the Nash equilibrium is given synchronously using genetic algorithms. A case study of Shanghai district shows that loss of the government could decrease efficiently by both establishing terror response facilities interactively and reducing the reaction time, and the more the facility quantity increases, the slower the slope becomes. This model reflects the strategy interaction between the government and the terrorists and is an effective method for facility location of terror response facilities.
分 类 号:O225[理学—运筹学与控制论] F224.32[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117