文物监测中无线传感器网络数据压缩算法  被引量:8

Data compression of wireless sensor networks in the heritage monitor

在线阅读下载全文

作  者:王举[1,2] 房鼎益[1,2] 陈晓江[1,3,2] 邢天璋[1,2] 张远[1,2] 高宝建[1] 

机构地区:[1]西北大学信息科学与技术学院,陕西西安710127 [2]西安市遗址保护物联网应用工程实验室,陕西西安710127 [3]西北大学文化遗产研究与保护技术教育部重点实验室,陕西西安710127

出  处:《西安电子科技大学学报》2012年第1期157-162,共6页Journal of Xidian University

基  金:国家自然科学基金资助项目(61070176;61170218);国家教育部博士点基金资助项目(20106101110018);国家教育部科学技术研究重点资助项目(211181);陕西省教育厅科研计划资助项目(2011JG06;2010JC25;2010JK854;09JK736);陕西省科技攻关资助项目(2011K06-07);西安市工业应用技术研发资助项目(CXY1118(5));西北大学文化遗产研究与保护技术教育部重点实验室开放课题基金资助项目;碑林区科技计划资助项目

摘  要:文物监测数据具有结构单一、冗余性大、误差高容忍度的特点,使得无线传感器网络中现有的数据压缩算法在文物监测中显得计算复杂度高、计算能耗大.将轻计算量型的SDT(Swing Door Trending)算法应用到无线传感器网络的文物监测中并作了改进,分析了大规模情况下数据压缩和网络能耗之间的关系,将改进的SDT算法与目前无线传感器网络中有代表性的分布式小波压缩算法进行比较.实验表明,改进的SDT计算能耗较分布式小波压缩算法的能耗少73%,在压缩率小于25%时,改进的SDT压缩算法性能可与分布式小波压缩算法媲美.在长期、大规模的文物监测下,改进的SDT算法更适合于无线传感器网络数据压缩.The heritage monitoring data structure with features of monotony, large redundancy and high tolerance. These features make data compression of the wireless sensor network (WSN) in the existing algorithms a high computational complexity and great computational energy consumption. In this paper the improved Swing Door Trending (SDT) algorithm is applied to the compression of WSN for heritage monitoring. In the case of a large-scale heritage monitor, we analyse the relationship between data compression and network energy consumption. Experiments show that the improved SDT's calculational energy consumption is less then 73% compared with the DWC. And when the compression ratio is less than 25%, the improved compression algorithm SDT can be comparable with the DWC. Under the long-term, large-scale heritage monitor the improved SDT algorithm Data compression is more suitable for WSN.

关 键 词:文物监测 数据压缩 无线传感器网络 SDT算法 分布式小波压缩算法 能耗 

分 类 号:TP393.02[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象