检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学机械电子工程学院,成都611731
出 处:《计算机工程与应用》2012年第6期9-12,27,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.50905028);电子科技大学青年科技基金
摘 要:GP算法求分形关联维数时,双对数曲线的线性区间(无标度区)的识别十分关键。经典的GP算法中无标度区的识别主要依靠人工经验完成,同一条曲线,不同的人可能得到不同的无标度区,从而导致估算的关联维数存在较大差别。根据无标度区范围内的双对数曲线近似为一条直线段,其二阶导数应在0附近上下微幅波动的特点,提出了一种由计算机对无标度区进行自动识别的方法。该方法物理意义清晰,便于在计算机上编程实现。用Lorenz方程X轴的数据对方法进行了验证,计算结果表明,提出的方法可以有效地识别无标度区。The identification of the linear segment in double logarithmic curves (or log-log curves), also known as scaling region (or non-scale range in some papers), is important in Grassberger-Procaccia (GP) algorithm. The scaling region is normally determined by experience in classical GP algorithm, which may lead the values of the correlation-dimension to be estimated different from person to person. In GP algorithm, the second-order derivative of log-log curves within the scaling region should be zero or slightly fluctuate near zero because the log-log curves are nearly straight lines in that scaling region. Based on this character of the log-log curves, a new method with clear physical meaning is presented to automatically identify the fractal scaling region. The process of this method is simple and can be realized easily on computer. A time series data of the Lorenz strange attractor are used to test the method. The estimated correla- tion-dimension of Lorenz attractors based on this method is very close to the theoretical value. The numerical results show that the scal- ing region can be identified accurately and automatically by this method.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7