Extremals in some classes of Carnot groups  被引量:3

Extremals in some classes of Carnot groups

在线阅读下载全文

作  者:HUANG TiRen YANG XiaoPing 

机构地区:[1]Department of Applied Mathematics, Nanjing University of Science & Technology, Nanjing 210094, China

出  处:《Science China Mathematics》2012年第3期633-646,共14页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No.10771102)

摘  要:Let G be a Carnot group and D={e 1,e 2 } be a bracket generating left invariant distribution on G.In this paper,we obtain two main results.We first prove that there only exist normal minimizers in G if the type of D is (2,1,...,1) or (2,1,...,1,2).This immediately leads to the fact that there are only normal minimizers in the Goursat manifolds.As one corollary,we also obtain that there are only normal minimizers when dim G 5.We construct a class of Carnot groups such as that of type (2,1,...,1,2,n 0,...,n a) with n 0 1,n i 0,i=1,...,a,in which there exist strictly abnormal extremals.This implies that,for any given manifold of dimension n 6,we can find a class of n-dimensional Carnot groups having strictly abnormal minimizers.We conclude that the dimension n=5 is the border line for the existence and nonexistence of strictly abnormal extremals.Our main technique is based on the equations for the normal and abnormal extremals.Let G be a Carnot group and D={e 1,e 2 } be a bracket generating left invariant distribution on G.In this paper,we obtain two main results.We first prove that there only exist normal minimizers in G if the type of D is (2,1,...,1) or (2,1,...,1,2).This immediately leads to the fact that there are only normal minimizers in the Goursat manifolds.As one corollary,we also obtain that there are only normal minimizers when dim G 5.We construct a class of Carnot groups such as that of type (2,1,...,1,2,n 0,...,n a) with n 0 1,n i 0,i=1,...,a,in which there exist strictly abnormal extremals.This implies that,for any given manifold of dimension n 6,we can find a class of n-dimensional Carnot groups having strictly abnormal minimizers.We conclude that the dimension n=5 is the border line for the existence and nonexistence of strictly abnormal extremals.Our main technique is based on the equations for the normal and abnormal extremals.

关 键 词:Carnot group EXTREMAL MINIMIZER 

分 类 号:O211.6[理学—概率论与数理统计] O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象