Erdoes-Ko-Rado theorem for irreducible imprimitive reflection groups  

Erdoes-Ko-Rado theorem for irreducible imprimitive reflection groups

在线阅读下载全文

作  者:Li WANG 

机构地区:[1]Department of Mathematics,Shanghai Normal University,Shanghai 200234,China

出  处:《Frontiers of Mathematics in China》2012年第1期125-144,共20页中国高等学校学术文摘·数学(英文)

基  金:Acknowledgements The author would like to express her deep gratitude to Professor Jun Wang for guiding her into this area and thank the referees for their invaluable suggestions. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11001176, 10971138).

摘  要:Let Ω be a finite set, and let G be a permutation group on Ω. A subset H of G is called intersecting if for any a, 7r H, they agree on at least one point. We show that a maximal intersecting subset of an irreducible imprimitive reflection group G(m,p,n) is a coset of the stabilizer of a point in {1,... ,n} provided n is sufficiently large.Let Ω be a finite set, and let G be a permutation group on Ω. A subset H of G is called intersecting if for any a, 7r H, they agree on at least one point. We show that a maximal intersecting subset of an irreducible imprimitive reflection group G(m,p,n) is a coset of the stabilizer of a point in {1,... ,n} provided n is sufficiently large.

关 键 词:Erdoes-Ko-Rado theorem representation theory imprimitivereflection groups 

分 类 号:T[一般工业技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象