机构地区:[1]USDA-ARS, Robert W. Holley Center for Agriculture and Health, Tower Road, Ithaca, New York 14853, USA [2]Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, USA [3]Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065, USA
出 处:《Journal of Integrative Agriculture》2012年第2期249-262,共14页农业科学学报(英文版)
基 金:supported by NSF BREAD IOS:1109989,USDA-NRI 2007-04567,NSFDBI-0606596;USDA-ARS 764 CRIS projects1907-101-16,1907-21000-024/25-00D;NIH/NCRR funded Yeast Resource Center P41RR01182
摘 要:Plant viruses in the families Luteoviridae and Geminiviridae are phloem restricted and are transmitted in a persistent,circulative manner by homopteran insects.Using fluorescence 2-D difference gel electrophoresis to compare the proteomes of F2 genotypes of Schizaphis graminum segregating for virus transmission ability,we recently discovered a panel of protein biomarkers that predict vector competency.Here we used aphid and whitefly nucleotide and expressed sequence tag database mining to test whether these biomarkers are conserved in other homopteran insects.S.graminum gene homologs that shared a high degree of predicted amino acid identity were discovered in two other aphid species and in the whitefly Bemisia tabaci.Selected reaction monitoring mass spectrometry was used to validate the expression of these biomarkers proteins in multiple aphid vector species.The conservation of these proteins in multiple insect taxa that transmit plant viruses along the circulative transmission pathway creates the opportunity to use these biomarkers to rapidly identify insect populations that are the most efficient vectors and allow them to be targeted for control prior to the spread of virus within a crop.Plant viruses in the families Luteoviridae and Geminiviridae are phloem restricted and are transmitted in a persistent,circulative manner by homopteran insects.Using fluorescence 2-D difference gel electrophoresis to compare the proteomes of F2 genotypes of Schizaphis graminum segregating for virus transmission ability,we recently discovered a panel of protein biomarkers that predict vector competency.Here we used aphid and whitefly nucleotide and expressed sequence tag database mining to test whether these biomarkers are conserved in other homopteran insects.S.graminum gene homologs that shared a high degree of predicted amino acid identity were discovered in two other aphid species and in the whitefly Bemisia tabaci.Selected reaction monitoring mass spectrometry was used to validate the expression of these biomarkers proteins in multiple aphid vector species.The conservation of these proteins in multiple insect taxa that transmit plant viruses along the circulative transmission pathway creates the opportunity to use these biomarkers to rapidly identify insect populations that are the most efficient vectors and allow them to be targeted for control prior to the spread of virus within a crop.
关 键 词:APHID WHITEFLY Schizaphis graminum Bemisia tabaci Acyrthosiphon pisum Toxoptera citricida Myzuspersicae proteomics biomarker circulative transmission BEGOMOVIRUS LUTEOVIRUS GEMINIVIRUS leaflaopper selected reaction monitoring SRM mass spectrometry targeted proteomics Skyline
分 类 号:S433[农业科学—农业昆虫与害虫防治]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...