检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:GUO XinLei YANG KaiLin GUO YongXin
出 处:《Science China(Technological Sciences)》2012年第3期743-752,共10页中国科学(技术科学英文版)
基 金:supported by the National Natural Science Foundation of China (Grant Nos. 51109230, 50679085);the Special Funds of IWHR (Grant No. 0912)
摘 要:A further development of exclusively inverse frequency domain method for leak detection in pipelines is presented and validated.The location and leakage can be determined by analyzing the difference of transient water head response between the simulated and measured data in frequency domain.The transient signals are generated by portion sharp closure of a valve from the small constant opening and it needs only a few meters of water.The discrete boundary conditions and observation data are both transformed in frequency domain by Laplace transform.Example in numerical simulation is studied for demonstration of this approach.The application of the method to an experimental pipeline confirms the analysis and illustrates successful detection of the single pipeline leak.The precalibration approach is presented to minimize the effect of data and model error and it splits the method into two parts.One uses data from a known state to fit the parameters of the model and the other uses data from the current state for the fitting of leak parameters using the now calibrated model.Some important practical parameters such as wave speed,friction in steady and unsteady state and the adaptability of the method are discussed.It was found that the nonlinearity errors associated with valve boundary condition could be prevented by consideration of the induced flow perturbation curve shape.
关 键 词:pipelines leak detection transient flow FREQUENCY FRICTION ALGORITHM
分 类 号:TP271.61[自动化与计算机技术—检测技术与自动化装置] TE973.6[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80