检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院上海微系统与信息技术研究所,上海200050 [2]无锡物联网产业研究院,江苏无锡214135
出 处:《计算机应用》2012年第3期646-648,共3页journal of Computer Applications
基 金:国家科技重大专项(2010ZX03006-004);国家973计划项目(2011CB302906)
摘 要:经典的模糊C均值算法基于欧氏距离,存在等划分趋势的缺陷,分错率较高,只适用于球形结构的聚类。针对这一问题,利用数据的点密度信息,在数据点与聚类中心的距离度量中引入了调节因子,提出了一种基于密度的距离修正矩阵,并用其代替经典模糊C均值算法中的距离度量矩阵。通过人造数据集和UCI数据集的两组聚类实验,证实了改进算法对非球形结构的数据同样适用,且相比经典的模糊C均值算法具有更高的聚类准确率。Based on Euclidean distance,the classic Fuzzy C-Means(FCM) clustering algorithm has the limitation of equal partition trend for data sets.And the clustering accuracy is lower when the distribution of data points is not spherical.To solve these problems,a distance correction factor based on dot density was introduced.Then a distance matrix with this factor was built for measuring the differences between data points.Finally,the new matrix was applied to modify the classic FCM algorithm.Two sets of experiments using artificial data and UCI data were operated,and the results show that the proposed algorithm is suitable for non-spherical data sets and outperforms the classic FCM algorithm in clustering accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229