检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安理工大学西北水资源与环境生态教育部重点实验室,陕西西安710048
出 处:《河海大学学报(自然科学版)》2012年第1期23-27,共5页Journal of Hohai University(Natural Sciences)
基 金:国家重点基础研究发展计划(973计划)(2007CB714106)
摘 要:针对混合型总体的频率分析是否需要按成因分开后再组合计算这一问题,依据概率论与数理统计理论,首先明确基本概念,之后对频率组合方法的应用范围进行理论分析与讨论,并以实例对混合型总体频率分析分成因与不分成因这2种方法的计算结果进行了比较、分析验证.结果表明:对于混合型总体,分与不分成因的频率分析结果是一致的;在没有人类干扰和超乎寻常的突发事件影响时,只要保持自然规律性,混合型总体也是一致性总体,频率分析没有必要采用分类频率组合的方法.In order to examine whether it is necessary to conduct frequency analysis through combination according to different causes of storm floods, the probability theory and the mathematical statistics theory were used to analyze the application range of the frequency combination method. A case study was conducted on a mixed population to compare, analyze, and verify the calculated results of the two methods, i. e., the method of frequency combination analysis according to different causes and the method of frequency analysis without considering the causes. The results show that the frequency analysis results of the two methods are consistent, and the mixed population is a population of consistency when there is no influence of human disturbance or unusual emergency. Thus, it is not necessary to conduct classified frequency combination analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28