检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张建伟[1] 刘思[1] 李朝阳[1] 蔡增玉[1]
机构地区:[1]郑州轻工业学院计算机与通信工程学院,郑州450002
出 处:《计算机工程》2012年第4期100-103,107,共5页Computer Engineering
基 金:国家"973"计划基金资助项目(2007CB307102;2007CB307100);河南省基础与前沿技术研究计划基金资助项目(082300410280)
摘 要:提出一种具有物理拓扑匹配能力的Chord模型(Ant-Chord),用以存储网络标识间的映射信息。该模型将整个Chord环中的存储节点看成一个旅行商问题(TSP),利用蚁群优化算法对TSP问题进行快速求解,用得到的解构建Chord环,并通过洛阳铲法对Chord环的路由跳数进行优化。Ant-Chord模型实现简单,对原始Chord模型改动不大,路由表的额外存储开销也较小。仿真结果表明,与同类Chord模型相比,Ant-Chord在资源发现的平均路由跳数、时延方面均有明显优势。This paper proposes a Chord model(Ant-Chord) which has an ability of physical topology matching to store the mapping information of identifiers. The ideas of Ant-Chord is to regard the storage nodes in the whole Chord as a TSP problem and solve the TSP problem quickly by using the ant colony algorithm, then to build the Chord with the obtained Traveling Salesman Problem(TSP), and proposes a method which called Luoyang Shovel Method(LSM) to optimize the Ant-Chord's routing hops. The model is simple and easy to implement, which has small changes within the original Chord model and little extra overhead cost in the routing table storage. Simulation results show that Ant-Chord has obvious advantages in average routing hops and delay in comparison with other Chord models.
关 键 词:网络标识分离 CHORD模型 蚁群优化算法 旅行商问题 物理拓扑匹配
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.188.157