基于线性链表的模糊关联规则挖掘  被引量:6

Linear Linklist Based Algorithm for Fuzzy Association Rule Mining

在线阅读下载全文

作  者:刘青宝[1] 王文熙[1] 王万军[1] 

机构地区:[1]国防科学技术大学信息系统工程重点实验室,长沙410073

出  处:《计算机科学》2012年第3期135-138,共4页Computer Science

基  金:国家自然科学基金(70771110)资助

摘  要:为改进现有模糊关联规则挖掘算法的不足,提出了一种基于线性链表的模糊关联规则挖掘算法。算法利用线性链表只存储有用的事务数据库信息,并不断利用前期的运算结果对之进行简化,减少了数据的存储开销及扫描时间,降低了算法的时间复杂度,提高了算法的效率。比较分析以及实验表明,该算法对于挖掘模糊关联规则是快速而有效的。In order to improve the efficiency of existing fuzzy association rule mining algorithms, we presented a linear linklist based algorithm for fuzzy association rule mining. Utilizing the linear linklist our algorithm only records the information of the tran-sactions which are useful for counting the support of the frequent itemset, and simplifies the transactions information according to the previous results, which reduces the cost of data storage and increases the running efficiency. Experiments demonstrate that our method is efficient in fuzzy association rule mining.

关 键 词:数据挖掘 模糊关联规则 线性链表 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象