基于PSVM的主动学习肿块检测方法  被引量:3

A PSVM-Based Active Learning Method for Mass Detection

在线阅读下载全文

作  者:王颖[1] 高新波[1] 李洁[1] 王秀美[1] 

机构地区:[1]西安电子科技大学电子工程学院,西安710071

出  处:《计算机研究与发展》2012年第3期572-578,共7页Journal of Computer Research and Development

基  金:国家杰出青年科学基金项目(61125204);国家自然科学基金项目(61172146);中央高校基本科研业务费专项资金(K50510020013);陕西省自然科学基础研究计划资助项目(2011JQ8018)

摘  要:肿块区域通常形态各异、差异性较大,并且与正常组织相比没有明显的区别,严重影响了肿块自动检测系统的性能.为了能够有效地提高乳腺X线图像中肿块的检测灵敏度,通过引入包含了样本间相互制约关系的具有成对约束的SVM (PSVM)算法,提出了一种基于PSVM 的主动学习机制.其中,由系统根据样本的不确定性和相互之间的特征匹配距离,主动选择应该反馈给训练集的成对样本.实验结果表明,这种基于PSVM的主动学习方法,能够充分利用样本所包含的信息,使得检测方法具有更好的推广能力和检测性能.In mammograms,masses always vary widely in their shapes and densities,and yet share common appearances with the normal tissues.This point extremely increases the detection difficulty and also impacts the performance of the automatic mass detecting system.To improve the sensitivity of mass detection system,we propose an active learning scheme to detect various masses on mammograms.Firstly,the pairwise constraints are introduced,and the scheme conducts with pairwise support vector machine(PSVM) by involving the relationship among different samples into the classification procedure.Furthermore,according to the detection results,the missed samples with their uncertainty information are combined with the matched feature distance among different samples to provide for re-consideration.Then,with the representative information,the proposed PSVM-based method actively selects the pairwise samples that should be feed back to the training set.The experimental results show that the proposed active learning method with PSVM could make full use of the information of samples,and thus,it could get satisfactory detection rates and false positives during the detection procedure.The method can also get good compromise between the sensitivity and specificity,and the whole learning scheme has better generalization ability and detection performance in comparison with some existing detection methods.

关 键 词:计算机辅助检测 肿块检测 成对约束 成对约束支持向量机 主动学习 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象