检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周友行[1] 董银松[1] 张海华[1] 郭辉[1]
出 处:《中南大学学报(自然科学版)》2012年第2期505-510,共6页Journal of Central South University:Science and Technology
基 金:湖南省高校创新平台开放基金资助项目(10K063);教育部留学回国人员科研启动基金资助项目(2009-1590);湖南省自然科学基金省市联合基金资助项目(10JJ9005)
摘 要:针对批量钻削工序质量检测问题,采用声发射传感器采集工序加工过程中的声发射信号,提取其时域统计特征,构造工序过程信号的特征向量,根据密度带噪声的空间增量聚类算法(InDBSCAN)对工序过程中的声发射信号特征向量进行增量聚类,以分析批量工序质量。考虑到插入数据点在促成新类创建的同时可能引起已存在的不同类合并的情况,改进InDBSCAN算法。实验结果表明:改进的InDBSCAN算法使插入数据点的增量聚类更加合理,工序质量分布状况检测准确率达84.03%。Aiming at monitor and analysis on batch drilling-quality,an acoustic emission sensor was used to collect the acoustic emission signal,extract statistic characteristics and then construct the signal characteristic vector.An improved incremental density based spatial clustering algorithm of time-domain applications with noise(InDBSCAN) was put forward to analyze the distribution law of batch drilling-quality indirectly.Take new data insertion into consideration.Because some of the original clusters could be remerged when the new cluster was created,and so the InDBSCAN algorithm was modified.The results show that the conclusion of incremental cluster analysis is more reasonable by the improved InDBSCAN algorithm and the detection accuracy of batch drilling-quality is up to 84.3%.
关 键 词:批量钻削 工序质量 特征向量 增量聚类 层次分析法
分 类 号:TP274.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68