分形压缩感知高维信号重构方法  被引量:1

Fractal compressive sensing for high-dimension signal recovery

在线阅读下载全文

作  者:刘佶鑫[1] 孙权森[1] 

机构地区:[1]南京理工大学计算机科学与技术学院,南京210094

出  处:《中国图象图形学报》2012年第3期309-314,共6页Journal of Image and Graphics

基  金:江苏省自然科学基金项目(BK2008411);教育部博士学科点基金项目(200802880017)

摘  要:压缩感知理论改变了香农采样定理的信号处理思路,具有十分重要的科研应用价值。压缩感知框架下信号重构是获取数字终端产品的关键性环节,典型的重构方法是以基追踪(BP)算法为代表,核心是解决L1范数最小化问题,但是BP算法在高维的信号重构中表现不佳。因此,本文提出一种基于分形维度的压缩感知高维信号重构方法,采用分形中的Minkowski维度代替L1范数作为重构问题的目标函数。实验的可视化结果和信噪比均表明,分形压缩感知信号重构方法既保持了BP算法的优点又改善了其维度的广延性。In the research field of digital signal processing, compressive sensing (CS) becomes more and more important because it changes the traditional signal processing method based on Shannon's sampling theorem. Under the CS framework, signal recovery is a key point to obtain the digital termination product. The basis pursuit (BP) algorithm seems the most fundamental method of CS recovery, which is essentially an L1 -norm minimization problem. However, BP can not be used for the signals with more than one dimension. Therefore, this paper presents a new high-dimension CS recovery method based on fractal dimension theory. The Minkowski dimension is used to replace the L1-norm as an object function in CS recovery. The visualization and SNR of our experimental results show that fractal CS recovery not only inherits the advantage of BP but also improves the dimensional extensive property.

关 键 词:压缩感知 信号重构 L1范数最小化 分形维度 

分 类 号:TN911.72[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象