PartialRC: A Partial Recomputing Method for Efficient Fault Recovery on GPGPUs  被引量:1

PartialRC: A Partial Recomputing Method for Efficient Fault Recovery on GPGPUs

在线阅读下载全文

作  者:徐新海 杨学军 薛京灵 林宇斐 林一松 

机构地区:[1]National Laboratory for Parallel and Distributed Processing,School of Computer,National University of Defense Technology [2]Programming Languages and Compilers Group,School of Computer Science and Engineering University of New South Wales

出  处:《Journal of Computer Science & Technology》2012年第2期240-255,共16页计算机科学技术学报(英文版)

基  金:supported by the National Natural Science Foundation of China under Grant Nos. 60921062, 61003087, 61120106005 and 61170049

摘  要:GPGPUs are increasingly being used to as performance accelerators for HPC (High Performance Computing) applications in CPU/GPU heterogeneous computing systems, including TianHe-1A, the world's fastest supercomputer in the TOP500 list, built at NUDT (National University of Defense Technology) last year. However, despite their performance advantages, GPGPUs do not provide built-in fault-tolerant mechanisms to offer reliability guarantees required by many HPC applications. By analyzing the SIMT (single-instruction, multiple-thread) characteristics of programs running on GPGPUs, we have developed PartialRC, a new checkpoint-based compiler-directed partial recomputing method, for achieving efficient fault recovery by leveraging the phenomenal computing power of GPGPUs. In this paper, we introduce our PartialRC method that recovers from errors detected in a code region by partially re-computing the region, describe a checkpoint-based faulttolerance framework developed on PartialRC, and discuss an implementation on the CUDA platform. Validation using a range of representative CUDA programs on NVIDIA GPGPUs against FullRC (a traditional full-recomputing Checkpoint-Rollback-Restart fault recovery method for CPUs) shows that PartialRC reduces significantly the fault recovery overheads incurred by FullRC, by 73.5% when errors occur earlier during execution and 74.6% when errors occur later on average. In addition, PartialRC also reduces error detection overheads incurred by FullRC during fault recovery while incurring negligible performance overheads when no fault happens.GPGPUs are increasingly being used to as performance accelerators for HPC (High Performance Computing) applications in CPU/GPU heterogeneous computing systems, including TianHe-1A, the world's fastest supercomputer in the TOP500 list, built at NUDT (National University of Defense Technology) last year. However, despite their performance advantages, GPGPUs do not provide built-in fault-tolerant mechanisms to offer reliability guarantees required by many HPC applications. By analyzing the SIMT (single-instruction, multiple-thread) characteristics of programs running on GPGPUs, we have developed PartialRC, a new checkpoint-based compiler-directed partial recomputing method, for achieving efficient fault recovery by leveraging the phenomenal computing power of GPGPUs. In this paper, we introduce our PartialRC method that recovers from errors detected in a code region by partially re-computing the region, describe a checkpoint-based faulttolerance framework developed on PartialRC, and discuss an implementation on the CUDA platform. Validation using a range of representative CUDA programs on NVIDIA GPGPUs against FullRC (a traditional full-recomputing Checkpoint-Rollback-Restart fault recovery method for CPUs) shows that PartialRC reduces significantly the fault recovery overheads incurred by FullRC, by 73.5% when errors occur earlier during execution and 74.6% when errors occur later on average. In addition, PartialRC also reduces error detection overheads incurred by FullRC during fault recovery while incurring negligible performance overheads when no fault happens.

关 键 词:GPGPU partial recomputing fault tolerance CUDA CHECKPOINTING 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象