Analysis of combustion instability via constant volume combustion in a LOX/RP-1 bipropellant liquid rocket engine  被引量:8

在线阅读下载全文

作  者:ZHANG HuiQiang GA YongJing WANG Bing WANG XiLin 

机构地区:[1]Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China

出  处:《Science China(Technological Sciences)》2012年第4期1066-1077,共12页中国科学(技术科学英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.50706021)

摘  要:Turbulent two-phase reacting flow in the chamber of LOX/RP-1 bipropellant liquid rocket engine is numerically investigated in this paper. The predicted pressure and mean axial velocity are qualitatively consistent with the experimental measurements. The self-excited pressure oscillations are obtained without any disturbance introduced through the initial and boundary conditions. It is found that amount of abrupt pressure peaks appear frequently and stochastically in the head regions of the chamber, which are the important sources to drive and strengthen combustion instability. Such abrupt pressures are induced by local constant volume combustion, because local combustible gas mixtures with high temperature are formed and burnt out suddenly due to some fuel droplets reaching their critical state in a rich oxygen surrounding. A third Damkhler number is defined as the ratio of the characteristic time of a chemical reaction to the characteristic time of a pressure wave expansion to measure the relative intensity of acoustic propagation and combustion process in thrusters. The analysis of the third Damkhler number distributions in the whole thrust chamber shows that local constant volume combustion happens in the head regions, while constant pressure combustion presents in the downstream regions. It is found that the combustion instability occurs in the head regions within about 30 mm from the thruster head.Turbulent two-phase reacting flow in the chamber of LOX/RP-1 bipropellant liquid rocket engine is numerically investigated in this paper. The predicted pressure and mean axial velocity are qualitatively consistent with the experimental measurements. The self-excited pressure oscillations are obtained without any disturbance introduced through the initial and boundary conditions. It is found that amount of abrupt pressure peaks appear frequently and stochastically in the head regions of the chamber, which are the important sources to drive and strengthen combustion instability. Such abrupt pressures are induced by local constant volume combustion, because local combustible gas mixtures with high temperature are formed and burnt out suddenly due to some fuel droplets reaching their critical state in a rich oxygen surrounding. A third Damkhler number is defined as the ratio of the characteristic time of a chemical reaction to the characteristic time of a pressure wave expansion to measure the relative intensity of acoustic propagation and combustion process in thrusters. The analysis of the third Damkhler number distributions in the whole thrust chamber shows that local constant volume combustion happens in the head regions, while constant pressure combustion presents in the downstream regions. It is found that the combustion instability occurs in the head regions within about 30 mm from the thruster head.

关 键 词:combustion instability constant volume combustion spray combustion LOX/RP-1 bipropellant liquid rocket engine third Damkohler number 

分 类 号:V434[航空宇航科学与技术—航空宇航推进理论与工程] U464.172[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象