Comparison between Sequential Gaussian Simulation and Kriging Interpolation on Soil Heavy Metal Pollution  

高斯序贯模拟与克里格插值2种土壤重金属污染分析方法的比较(英文)

在线阅读下载全文

作  者:王倩[1] 丁宁[1] 孙英君[1] 

机构地区:[1]山东建筑大学土木学院,山东济南250014

出  处:《Agricultural Science & Technology》2012年第3期561-564,共4页农业科学与技术(英文版)

基  金:Supported by the Science and Technology Development Program of Shandong Province (Soft Science) (2009RKB220),China~~

摘  要:[Objective] This study was to explore the difference of kriging interpolation and sequential Gaussian simulation on analyzing soil heavy metal pollution with a view to provide references for analyzing the heavy metal pollution of soil. [Method] The sampling data of soil copper from a county of Liaocheng, Shandong Province was set as the study objective. Kriging interpolation and sequential Gaussian simu- lation were used to simulate the spatial distribution of soil copper. And 30 sampling points were selected as the cross-validation data set to compare the two interpola- tion methods. [Result] Kriging method and Gaussian sequential simulation have their own advantages on simulating mean segment and extreme segment, therefore, re- searchers should choose the proper method based on the characteristics of test data and application purposes. [Conclusion] Analysis of soil heavy metal pollution is the prerequisite for soil management and ecological restoration. The result of this study is of important significance for choosing different interpolating and simulating methods to analyze soil heavy metal pollution based on different purposes.[目的]探讨克里格插值和高斯序贯模拟2种方法在土壤重金属污染分析中的差异,以期为土壤重金属污染分析方法的选择提供参考依据。[方法]以山东聊城某县重金属铜采样数据为研究对象,利用克里格插值和高斯序贯模拟2种方法进行土壤重金属铜的空间分布建模模拟。并选择30个采样点作为交叉验证数据集,对2种插值方法进行对比分析。[结果]克里格方法和高斯序贯模拟在均值段和极值段的模拟各有优势,研究者应根据试验数据的特点及应用目的对二者进行选择使用。[结论]土壤重金属污染分析是土壤治理、生态修复的前提,该研究结果对于根据不同目的需求来选择不同的插值、模拟方法具有重要意义。

关 键 词:SOIL Heavy metal Sequential Gaussian simulation Kriging interpolation 

分 类 号:X53[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象