一种面向高空间分辨率遥感影像的路口自动定位新方法  被引量:7

A New Approach to Automatic Positioning of Road Junctions in High Spatial Resolution Remotely Sensed Imagery

在线阅读下载全文

作  者:张伟伟[1,2] 毛政元[1,2] 

机构地区:[1]福州大学空间数据挖掘与信息共享教育部重点实验室,福州350002 [2]福州大学福建省空间信息工程研究中心,福州350002

出  处:《国土资源遥感》2012年第1期13-16,共4页Remote Sensing for Land & Resources

基  金:国家自然科学基金项目(编号:40871206);国家科技支撑计划项目(编号:2007BAH16B01)共同资助

摘  要:在系统归纳和分析现有的路口遥感信息提取方法的基础上,提出一种面向高空间分辨率遥感影像的路口自动定位新方法。该方法首先通过低梯度运算获取同质区域;然后设定阈值去除同质区内的水体、阴影以及小面元干扰物;再利用Hough变换检测二值图像中的直线,并根据直线参数出现的频率排序,保留参数出现频率较高且相互间夹角较大的直线;最后用该组直线交点的平均值定位路口。以福州市城区局部QuickBird全色影像为数据源定位四岔路口与三岔路口的实证研究表明,在同物异谱与异物同谱现象严重情况下,本文算法所定位的路口仍然准确有效。On the basis of systematically inducing and analyzing the methods to extract road junctions from remotely sensed imagery,a new approach to automatically positioning road junctions in high spatial resolution images is presented in this paper.The related algorithm includes the following steps: firstly,the homogeneous areas are obtained by lower gradient operator;then,waters,shadows and small areal distracting features are removed one by one;after that,the straight lines are detected in the binary image by means of Hough transform;finally,the detected straight lines are sorted according to the frequency with which they appear,and the road junctions are indicated with the average coordinates of the intersections of several top frequent straight lines each of which at least has one intersection angle larger than the predetermined threshold.In the case study,an intersection and a junction of three roads were located in local urban area of Fuzhou by using QuickBird panchromatic image as sample data,showing that the proposed approach,with robustness against spectral confusion and confused features,can efficiently and accurately locate road junctions.

关 键 词:路口 路口自动定位 高空间分辨率 QUICKBIRD影像 HOUGH变换 

分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象