检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘丽芳[1] 杨晶琼[1] 华卫[2] 苏有锦[1] 刘杰[3]
机构地区:[1]云南省地震局,昆明市北辰大道842号650224 [2]中国地震局地震预测研究所,北京100036 [3]中国地震台网中心,北京100045
出 处:《中国地震》2011年第3期268-279,共12页Earthquake Research in China
基 金:云南省应用基础研究重点项目(2010CC006);云南省重点项目(JCYB-20080601-4);地震科学联合基金(C08065)联合资助
摘 要:通过消除S波观测谱中的传播路径、场地响应、仪器响应等影响因素,得到中小地震的震源谱。根据Brune震源模型,运用遗传算法计算了地震矩、应力降、震源半径等震源参数;通过考虑由于有限的仪器带宽带来的地震辐射能量低估及补偿问题,测定了中小地震辐射能量;分析了云南地区ML2.0~5.3地震静力学和动力学参数定标关系。结果表明:地震矩为2.1×1012~1.2×1016N·m,地震矩M0和震级ML的线性关系式为lgM0=1.01ML+10.59;震源破裂半径在86.9~1220.4m之间,地震矩M0与震源半径a之间的关系式为lgM0=0.003a+12.90;应力降结果介于0.03~57.55MPa之间,当M0<4×1014N·m时,应力降随地震矩的增大而增大,当M0≥4×1014N·m时,应力降与地震矩之间无明显的依赖关系;地震矩M0与拐角频率fc明显有依赖关系,二者之间的关系式为lgfc=-lgM0+5.32;地震辐射能量ER在3.01×106~2.06×1012J之间,地震辐射能量ER与震级ML之间的关系为lgER=1.18ML+5.69。当M0<4×1014N·m时,折合能量有随地震矩增大而增大的趋势,当M0≥4×1014N·m时,折合能量不随地震矩的增大而变化;地震视应力范围为0.02~31.4MPa之间,视应力与震源深度之间没有明显的依赖性。The observational seismic S waveform data are corrected by removing the propagation, site effects, instrument etc, and source spectra for the moderate and small earthquakes are obtained. Based on Brune source model and by means of generalized inversion technique, we determined the source parameters including seismic moment, stress drop, source dimension etc. And we estimated the radiated seismic energy for moderate and small earthquakes with the possible underestimation by limited bandwidth recording taken into account. We analyzed the scaling relations of static and dynamic parameters for earthquakes with ML2.0~5.3 in the Yunnan region. The results show that the seismic moment is between 2.1×1012 N·m and 1.2×1016N·m, and there is a linear relation of lgM0=1.01ML+10.59between the seismic moment and local magnitude. The source dimension varies from 86.9m to 1220.4m. The seismic moment and rupture radius remain a linear correlation of lgM0=0.003a+12.90. The stress drop is in the range of 0.03~57.55MPa, and the stress drop increases with seismic moment for M04×1014N·m, while it doesn't vary with seismic moment for M0≥4×1014N·m. The seismic moment shows dependence of the corner frequency. Assuming the constant stress drops, we can obtain the relation of lgfc=-1 3lgM0+5.32 between the seismic moment and corner frequency using least squares fitting. The theoretical radiated seismic energy is between 3.01×106J and 2.06×1012J. The linear relation between the radiated seismic energy and local magnitude is lgER=1.18ML+5.69. The scaled energy increases with seismic moment for M04×1014N·m. However it seems that the scaled energy doesn't vary with seismic moment for M0≥4×1014N·m. The apparent stress is in the range of 0.02~31.4MPa. The apparent stress also seems independent of the seismic depth.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30