检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华东交通大学电气与电子工程学院,南昌330013 [2]南昌大学机电工程学院,南昌330031
出 处:《电工技术学报》2012年第2期210-216,共7页Transactions of China Electrotechnical Society
基 金:国家自然科学基金(51167005;60964004);江西省自然科学基金(2009GZS0016);江西省教育厅科技基金(GJJ11144);资助项目
摘 要:基于交易日市场电价预测曲线,采用概率统计方法对竞价风险进行评估,并在发电成本中纳入有害气体排放控制成本,以竞价风险最低化和全天发电期望利润最大化为目标,构建可体现机组出力与市场电价之间协调联动关系的机组交易日分时段出力多目标优化模型;通过将非劣排序操作与微分进化算法有机融合及改进以克服进化早熟和搜索不均匀等问题,设计出一种新型多目标微分进化算法对模型进行求解,并采用模糊集理论提取总体最优解。最后通过算例仿真,验证了本文方法能有效降低发电商对竞价风险的敏感性,可实现低风险、高收益的竞价上网。A new multi-objective optimization model for bidding and generating of thermal power units during the transaction day was established to minimize bidding risk and maximize generating profit, where bidding risk is assessed by probability statistics method based on forecasted electricity prices curves, and emissions cost is included in generation cost, and the coordinated interactive relation between unit output and market price is reflected. Moreover, a new multi-objective optimization algorithm is proposed to solute this model, in which the non-dominated sorting mechanism is integrated with the differential evolution algorithm, and the hybrid algorithm is improved to overcome the premature convergence and search bias problems, and fuzzy set theory is employed to extract the general best solution. Results of case simulation show that the effectiveness to reducing the sensitivity of bidding risk and the contribution to achieving low-risk bidding and high-profit generating of the proposed method.
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.71