检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南工业大学信息科学与工程学院,郑州450001
出 处:《吉林大学学报(工学版)》2012年第2期476-482,共7页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金项目(61001099);河南省重点科技攻关计划项目(082102210096);河南省高校青年骨干教师计划项目(2009GGJS-056);郑州市科技攻关计划项目(2010GYXM364)
摘 要:设计了点头次数肯定云、最大点头角肯定云和点头速度肯定云。运用各自的正向云生成算法指导产生一个点头动作序列的点头次数、最大点头角度和点头速度。三个参数以各自云模型的期望值为中心正态分布。提出的CBNCA算法能够产生组间呈规律性差异的点头动作序列控制曲线。为描述点头动作序列组内差异性,提出了CBNCA+算法,同时实现组间和组内点头动作的不确定性控制。对比实验验证了两个算法控制点头动作不确定性的有效性,并给出了三类云模型数字特征的建议值。Three kinds of cloud models were designed, which are the nodding times approving cloud, the maximal nodding angle approving cloud and the nodding speed approving cloud. With the guidance of respective positive cloud generation algorithms of the three models, three parameters in a nodding action serial, which are the nodding times, the maximal nodding angle and the nodding speed, were generated. The three parameters follow normal distributions around expected values of the three cloud models respectively. The proposed CBNCA algorithm generates control curves of nodding actions with disciplinary differences between different nodding action serials. In order to describe differences of actions in one nodding action serial, CBNCA+ algorithm was proposed. It can realize uncertainty control of nodding action both between different action serials, and between different actions in one serial. Experiment results prove the effectiveness of the uncertainty control for nodding action of the two cloud-based algorithms. Feature values of the three kind cloud models were proposed.
关 键 词:机器人技术 点头动作合成 云模型 不确定性控制 模糊性 随机性
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.49.72