Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China  被引量:13

Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China

在线阅读下载全文

作  者:刘文广 何毛贤 

机构地区:[1]Key Laboratory of Marine Bio-resources Sustainable Utilization,South China Sea Institute of Oceanology,Chinese Academy of Sciences

出  处:《Chinese Journal of Oceanology and Limnology》2012年第2期206-211,共6页中国海洋湖沼学报(英文版)

基  金:Supported by National Natural Science Foundation of China (No.41006090);the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q07-03);the National High Technology Research and Development Program of China (863 Program) (No.2006AA10A409)

摘  要:Oceanic uptake of anthropogenic carbon dioxide results in a decrease in seawater pH, a process known as "ocean acidification". The pearl oyster Pinctada fucata, the noble scallop Chlamys nobilis, and the green-lipped mussel Perna viridis are species of economic and ecological importance along the southern coast of China. We evaluated the effects of seawater acidification on clearance, respiration, and excretion rates in these three species. The animals were reared in seawater at pH 8.1 (control), 7.7, or 7.4. The clearance rate was highest at pH 7.7 for P. fucata and at pH 8.1 for C. nobilis and P. viridis. The pH had little effecton the respiration rate of P. fucata and P. viridis. In contrast, the respiration rate was significantly lower atpH 7.4 in C. nobilis. The excretion rate was significantly lower at pH 7.4 than pH 8.1 for all species. Theresults indicate that the reduction in seawater pH likely affected the metabolic process (food intake, oxygenconsumption, and ammonia excretion) of these bivalves. Different species respond differently to seawateracidification. Further studies are needed to demonstrate the exact mechanisms for this effect and evaluateadaptability of these bivalves to future acidified oceans.Oceanic uptake of anthropogenic carbon dioxide results in a decrease in seawater pH, a process known as "ocean acidification". The pearl oyster Pinctada fucata, the noble scallop Chlamys nobilis, and the green-lipped mussel Perna viridis are species of economic and ecological importance along the southern coast of China. We evaluated the effects of seawater acidification on clearance, respiration, and excretion rates in these three species. The animals were reared in seawater at pH 8.1 (control), 7.7, or 7.4. The clearance rate was highest at pH 7.7 forP.fucata and at pH 8.1 for C. nobilis and P. viridis. The pH had little effect on the respiration rate of P.fucata and P. viridis. In contrast, the respiration rate was significantly lower at pH 7.4 in C. nobilis. The excretion rate was significantly lower at pH 7.4 than pH 8.1 for all species. The results indicate that the reduction in seawater pH likely affected the metabolic process (food intake, oxygen consumption, and ammonia excretion) of these bivalves. Different species respond differently to seawater acidification. Further studies are needed to demonstrate the exact mechanisms for this effect and evaluate adaptability of these bivalves to future acidified oceans.

关 键 词:ocean acidification metabolic rate BIVALVIA Pinctadafucata Chlamys nobilis Perna viridis 

分 类 号:Q958.8[生物学—动物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象