Tool Path Generation for Clean-up Machining of Impeller by Point-searching Based Method  被引量:6

Tool Path Generation for Clean-up Machining of Impeller by Point-searching Based Method

在线阅读下载全文

作  者:TANG Ming ZHANG Dinghua LUO Ming WU Baohai 

机构地区:[1]The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology,Ministry of Education,Northwestern Polytechnieal University,Xi'an 710072,China

出  处:《Chinese Journal of Aeronautics》2012年第1期131-136,共6页中国航空学报(英文版)

基  金:National Natural Science Foundation of China (51005183); National Science and Technology Major Project (2011X04016-031)

摘  要:Machining quality of clean-up region has a strong influence on the performances of the impeller. In order to plan clean-up tool paths rapidly and obtain good finish surface quality, an efficient and robust tool path generation method is presented, which employs an approach based on point-searching. The clean-up machining mentioned in this paper is pencil-cut and multilayer fillet-cut for a free-form model with a ball-end cutter. For pencil-cut, the cutter center position can be determined via judging whether it satisfies the distance requirement. After the searching direction and the tracing direction have been determined, by employing the point-searching algorithm with the idea of dichotomy, all the cutter contact (CC) points and cutter location (CL) points can be found and the clean-up boundaries can also be defined rapidly. Then the tool path is generated. Based on the main concept of pencil-cut, a multilayer fillet-cut method is proposed, which utilizes a ball-end cutter with its radius less than the design radius of clean-up region. Using a sequence of intermediate virtual cutters to divide the clean-up region into several layers and given a cusp-height tolerance for the final layer, then the tool paths for all layers are calculated. Finally, computer implementation is also presented in this paper, and the result shows that the proposed method is feasible.Machining quality of clean-up region has a strong influence on the performances of the impeller. In order to plan clean-up tool paths rapidly and obtain good finish surface quality, an efficient and robust tool path generation method is presented, which employs an approach based on point-searching. The clean-up machining mentioned in this paper is pencil-cut and multilayer fillet-cut for a free-form model with a ball-end cutter. For pencil-cut, the cutter center position can be determined via judging whether it satisfies the distance requirement. After the searching direction and the tracing direction have been determined, by employing the point-searching algorithm with the idea of dichotomy, all the cutter contact (CC) points and cutter location (CL) points can be found and the clean-up boundaries can also be defined rapidly. Then the tool path is generated. Based on the main concept of pencil-cut, a multilayer fillet-cut method is proposed, which utilizes a ball-end cutter with its radius less than the design radius of clean-up region. Using a sequence of intermediate virtual cutters to divide the clean-up region into several layers and given a cusp-height tolerance for the final layer, then the tool paths for all layers are calculated. Finally, computer implementation is also presented in this paper, and the result shows that the proposed method is feasible.

关 键 词:NC machining IMPELLERS tool path CLEAN-UP point-searching 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] S562[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象