基于DEM的平缓地区水系提取和流域分割的流向算法分析  被引量:36

DEM-based flow direction algorithms study of stream extraction and watershed delineation in the low relief areas

在线阅读下载全文

作  者:张维[1] 杨昕[1] 汤国安[1] 祝士杰[1] 李彩丽[2] 

机构地区:[1]南京师范大学虚拟地理环境教育部重点实验室,南京210046 [2]南京大学地理与海洋学院,南京210046

出  处:《测绘科学》2012年第2期94-96,共3页Science of Surveying and Mapping

基  金:国家自然科学基金(40901185);国家自然科学基金重点基金(40930531);江苏省测绘科研基金(JSCHKY200910);南京师范大学研究生优秀学位论文培育计划项目(2010ss0013;2010bs0002)

摘  要:本文以地势较为平坦的秦淮河流域为实验样区,以高精度DEM(5m分辨率)和地形图水系为基础数据,对比分析了单流向算法(D8算法)、多流向算法(Dinf法)以及添加数字化河道信息后的单流向算法(Agree&D8算法)3种算法下水系提取和流域分割的结果。实验结果表明,提取得到的水系更逼近于实际河网,该算法既有效提高了水系提取和流域分割的精度,又保留了D8算法模型简单、稳定性强、运行效率高等优点。The paper explored performances of several different flow direction algorithms, namely D8 algorithm, Dinf algorithm and Agree & D8 algorithm. Among these algorithms, D8 algorithm is a kind of single flow direction algorithms, Dinf algorithm is one of multiple flow direction algorithms, while Agree & D8 algorithm is a method which introduces a real river channel vector map to DEM firstly, and then calculates the flow direction using D8 algorithm based on DEM. Quanhuai Basin, located at Nanjing of Jiangsu prov- ince, a large, flat catchment with an area of over 2600 km2was selected to perform the comparisons. And the DEM with 5 meter resolu- tion and the real river channel vector map with the same scale were used. The experimental resuhs showed that Agree & D8 algorithm offered the best stream extraction and watershed automatic delineation results, which approached to the real channel network and real sub-watershed most. Agree & D8 algorithm, which not only took the advantage of D8 algorithm, such as simple, steady and high effi- ciency, but also effectively improved the accuracy of river channel extraction and watershed automatic delineation, was a proper meth- od to extract catchment properties in large and low relief area.

关 键 词:流向算法 DEM 平缓地区 水系提取 流域分割 

分 类 号:P931.1[天文地球—自然地理学] P283.8

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象