改进人工鱼群优化粗糙集的水电机组故障诊断  被引量:3

Fault Diagnosis of Hydro-turbine Generating Unit using Modified AFSA-based Rough Set Theory

在线阅读下载全文

作  者:付波[1,2] 黄英伟[1] 程琼[1] 邢鑫[1] 

机构地区:[1]湖北工业大学电气与电子工程学院,湖北武汉430068 [2]东莞华中科技大学制造工程研究院,广东东莞523000

出  处:《湖北工业大学学报》2012年第1期92-95,共4页Journal of Hubei University of Technology

基  金:湖北省自然科学基金项目(2010CDB02501);广东省工业攻关项目(2011B010100037)

摘  要:针对水电机组大量的现场监测数据信息,基于传统的人工智能方法对故障信息不能及时有效地分析的问题,提出了一种基于改进人工鱼群优化粗糙集的水电机组故障诊断方法.首先,利用鱼群的寻优聚群行为对连续属性进行离散化,然后采用粗糙集理论对离散化后的决策表进行约简,建立故障诊断规则决策表,再用提取的规则对水电机组故障进行诊断.仿真结果表明:与传统方法相比,该算法能够提高水电机组故障诊断的准确率.Due to the fact that the traditional artificial intelligence methods cannot effectively and timely a-nalysis or can not be accurately diagnosed or misdiagnosed because of the ill-conditioned problem caused byinefficient discretization approaches, based on a large number of on-site monitoring data, a method basedon rough set theory integrated with improved artificial fish-swarm algorithm (AFSA) was presented in thispaper for fault diagnosis of hydro-turbine generating unit. Firstly, the improved artificial fish-swarm algo-rithm was used to discrete continuous attribute, and then the rough set theory was used to reduce the deci-sion table. Therefore, the rules could be ued to diagnose the faults. The simulation results indicated that themethod increased the diagnosis accuracy.

关 键 词:水电机组 故障诊断 改进人工鱼群 粗糙集 规则 

分 类 号:TK730.7[交通运输工程—轮机工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象