检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付波[1,2] 黄英伟[1] 程琼[1] 邢鑫[1]
机构地区:[1]湖北工业大学电气与电子工程学院,湖北武汉430068 [2]东莞华中科技大学制造工程研究院,广东东莞523000
出 处:《湖北工业大学学报》2012年第1期92-95,共4页Journal of Hubei University of Technology
基 金:湖北省自然科学基金项目(2010CDB02501);广东省工业攻关项目(2011B010100037)
摘 要:针对水电机组大量的现场监测数据信息,基于传统的人工智能方法对故障信息不能及时有效地分析的问题,提出了一种基于改进人工鱼群优化粗糙集的水电机组故障诊断方法.首先,利用鱼群的寻优聚群行为对连续属性进行离散化,然后采用粗糙集理论对离散化后的决策表进行约简,建立故障诊断规则决策表,再用提取的规则对水电机组故障进行诊断.仿真结果表明:与传统方法相比,该算法能够提高水电机组故障诊断的准确率.Due to the fact that the traditional artificial intelligence methods cannot effectively and timely a-nalysis or can not be accurately diagnosed or misdiagnosed because of the ill-conditioned problem caused byinefficient discretization approaches, based on a large number of on-site monitoring data, a method basedon rough set theory integrated with improved artificial fish-swarm algorithm (AFSA) was presented in thispaper for fault diagnosis of hydro-turbine generating unit. Firstly, the improved artificial fish-swarm algo-rithm was used to discrete continuous attribute, and then the rough set theory was used to reduce the deci-sion table. Therefore, the rules could be ued to diagnose the faults. The simulation results indicated that themethod increased the diagnosis accuracy.
分 类 号:TK730.7[交通运输工程—轮机工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3