检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学自动化工程学院,成都611731
出 处:《仪器仪表学报》2012年第3期555-560,共6页Chinese Journal of Scientific Instrument
基 金:国家863计划(2006AA06Z222);教育部新世纪优秀人才支持计划(NCET-05-0804)资助项目
摘 要:针对模拟电路早期故障诊断的难题,基于分数阶小波转换(fractional wavelet trarsform,FRWT)并结合隐马尔科夫模型(hidden Markov model,HMM),提出了一种模拟电路故障特征分析的新方法。首先将无故障状态和各故障状态下模拟待测试电路(circuit under test,CUT)的响应序列进行分数阶小波分解得到子带响应序列,然后从子带响应序列提取出故障特征向量并构成观测序列训练出HMM,最后利用训练好的HMM对未知状态电路进行诊断。实验结果表明,该方法能有效提取模拟电路的故障特征,完成模拟电路早期故障检测和故障定位。Aiming at the problem of incipient fault diagnosis in analog circuits,based on fractional wavelet transform(FRWT) combined with hidden Markov model(HMM),a new approach is proposed to analyze the fault signatures of analog circuits.Firstly,the response sequences of the analog circuit under test(CUT) in fault-free state and faulty states are decomposed using fractional wavelet to obtain the response sequences in subbands.Then,the fault signature vectors extracted from the response sequences in subbands are used to form the observation sequences to train the HMMs of the CUT.Finally,the unknown states of the CUT are diagnosed using the well-trained HMMs.Experiment results show that the method proposed in this paper can extract the fault signatures of analog circuits effectively and achieve detection and location of incipient faults in analog circuits.
关 键 词:模拟电路 早期故障 故障诊断 分数阶小波变换 隐马尔科夫模型
分 类 号:TN707[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249