检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2012年第9期47-50,共4页Computer Engineering and Applications
基 金:河南省社科联基金项目(No.SKL20103224)
摘 要:针对粒子群优化算法在处理高维复杂函数时存在收敛速度慢、易陷入早熟收敛等缺点,提出了混合粒子群优化算法。它借鉴群体位置方差的早熟判断机制,把基因换位和变异算子引入到算法中,构造出新的个体和个体基因的适应值函数,将适应值最差的基因进行变异。为减少算法计算量,采用耗散的粒子群算法结构。实验表明,该算法比只有一个适应值的粒子群算法具有更快的收敛速度。且具有很强的避免局部极小能力,其性能远远优于单一优化方法。Using Particle Swarm Optimization (PSO) to handle complex functions with high-dimension has the problems of low con- vergence speed and premature convergence. This paper proposes a hybrid particle swarm optimization. It adopts prematurity judge mechanism by the variance of the population' s fitness and puts gene conversion and mutation operator into algorithm. It constructs a new individual and individual gene fitness function, and will adapt to the worst gene mutation value. To reduce the computation of the proposed algorithm, it uses quantum dissipative particle swarm algorithm structure. Experimental results show that compared with parti- cle swarm algorithm which has only one fitness value, it has faster convergence rate. Especially the hybrid particle swarm optimization is of strong ability to avoid being trapped in local minima, and performances are fairly superior to single method.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3