稀疏判别分析  被引量:2

Sparse discriminant analysis

在线阅读下载全文

作  者:陈小冬[1] 林焕祥[2] 

机构地区:[1]浙江广播电视大学信息与工程学院,杭州310030 [2]浙江科技学院信息与电子工程学院,杭州310023

出  处:《计算机应用》2012年第4期1017-1021,共5页journal of Computer Applications

基  金:浙江省自然科学基金资助项目(Y1100349);浙江省教育厅2011年度科研计划项目(Y201119679);中央广播电视大学资助项目(GFQ1601);浙江广播电视大学资助项目(XKT-11J03);2010年浙江省高校优秀青年教师资助计划项目

摘  要:针对流形嵌入降维方法中在高维空间构建近邻图无益于后续工作,以及不容易给近邻大小和热核参数赋合适值的问题,提出一种稀疏判别分析算法(SEDA)。首先使用稀疏表示构建稀疏图保持数据的全局信息和几何结构,以克服流形嵌入方法的不足;其次,将稀疏保持作为正则化项使用Fisher判别准则,能够得到最优的投影。在一组高维数据集上的实验结果表明,SEDA是非常有效的半监督降维方法。Methods for manifold embedding have the following issues: on one hand,neighborhood graph is constructed in such high-dimensionality of original space that it tends to work poorly;on the other hand,appropriate values for the neighborhood size and heat kernel parameter involved in graph construction are generally difficult to be assigned.To address these problems,a new semi-supervised dimensionality reduction algorithm called SparsE Discriminant Analysis(SEDA) was proposed.Firstly,SEDA set up a sparse graph to preserve the global information and geometric structure of the data based on sparse representation.Secondly,it applied both sparse graph and Fisher criterion to seek the optimal projection.The experimental results on a broad range of data sets show that SEDA is superior to many popular dimensionality reduction methods.

关 键 词:判别分析 稀疏表示 近邻图 稀疏图 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象