检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪红兵[1,2] 艾立翔[3] 徐安军[3] 田乃媛[3] 候志昌 周正文[1]
机构地区:[1]北京科技大学计算机与通信工程学院,北京100083 [2]北京科技大学钢铁流程先进控制教育部重点实验室,北京100083 [3]北京科技大学冶金与生态工程学院,北京100083 [4]上海安可科技有限公司,上海200433
出 处:《北京科技大学学报》2012年第3期264-269,共6页Journal of University of Science and Technology Beijing
基 金:"十一五"国家科技支撑计划重大项目"新一代可循环钢铁流程工艺技术"(2006BAE03A07);中央高校基本科研业务费专项(FRF-AS-09-006B)
摘 要:针对BP神经网络训练时间长的问题,采用基于案例推理的方法预测精炼开始钢水温度.首先,应用层次分析法确定影响精炼开始钢水温度的各个因素的权值,并使用灰色关联度来计算案例的相似度,克服了传统相似度计算方法在案例信息不完整的情况下无法获取准确结果的缺点.然后,提出一个包含类选、粗选、精选和择优的四步检索方法,大大缩短了检索时间.最后,实验比较了人工神经网络和基于案例推理两种方法,结果表明基于案例推理比人工神经网络具有更高的命中率.Case-based reasoning was used to predict the starting temperature of molten steel in second refining so as to avoid the long training time of a BP ( back propagation) neural network. Analytic hierarchy process (AHP) was applied to determine the weights of factors influencing the starting temperature. Grey relational degree was adopted to compute the similarity between cases. Thus the shortcoming of difficulty in obtaining accurate cases with incomplete information is conquered. A four-step search method, including class search, rough search, delicate search, and optimized search, was provided, by which the search time decreases greatly. Experi- mental results using both artificial neural networks and case-based reasoning were compared. It is shown that case-based reasoning has got a higher hit rate and a shorter response time than artificial neural networks.
分 类 号:TF703.5[冶金工程—钢铁冶金] TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62